Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits

Abstract

Contact-dependent communication between immune cells generates protection but also facilitates viral spread. Here we found that macrophages formed long-range actin-propelled conduits in response to negative factor (Nef), a human immunodeficiency virus type 1 (HIV-1) protein with immunosuppressive functions. Conduits attenuated immunoglobulin G2 (IgG2) and IgA class switching in systemic and intestinal lymphoid follicles by shuttling Nef from infected macrophages to B cells through a guanine-exchange factor–dependent pathway involving the amino-terminal anchor, central core and carboxy-terminal flexible loop of Nef. By showing stronger virus-specific IgG2 and IgA responses in patients with Nef-deficient virions, our data suggest that HIV-1 exploits intercellular 'highways' as a 'Trojan horse' to deliver Nef to B cells and evade humoral immunity systemically and at mucosal sites of entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infected primary macrophages transfer Nef to B cells and inhibit T cell–dependent class switching.
Figure 2: Nef is sufficient for macrophage-like cells to acquire class switch-inhibiting functions.
Figure 3: Nef uses multiple motifs to stimulate conduit formation in macrophage-like cells.
Figure 4: Infected primary macrophages transfer Nef to B cells through long-range actin-propelled conduits.
Figure 5: THP-1 cells inhibit class switching by trafficking membrane and vesicular Nef through Vav and small GTPases.
Figure 6: Nef inhibits class switching in GCs but not extrafollicular areas.
Figure 7: The ΔNef HIV-1 elicits more virus-specific IgG2, IgA1 and IgA2 than does wild-type HIV-1 regardless of viral load.

Similar content being viewed by others

References

  1. Davis, D.M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 7, 238–243 (2007).

    Article  CAS  Google Scholar 

  2. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  Google Scholar 

  3. Sherer, N.M. & Mothes, W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol. 18, 414–420 (2008).

    Article  CAS  Google Scholar 

  4. Watkins, S.C. & Salter, R.D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318 (2005).

    Article  CAS  Google Scholar 

  5. Fackler, O.T., Alcover, A. & Schwartz, O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat. Rev. Immunol. 7, 310–317 (2007).

    Article  CAS  Google Scholar 

  6. Sherer, N.M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell Biol. 9, 310–315 (2007).

    Article  CAS  Google Scholar 

  7. Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219 (2008).

    Article  CAS  Google Scholar 

  8. Qiao, X. et al. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nat. Immunol. 7, 302–310 (2006).

    Article  CAS  Google Scholar 

  9. Muratori, C. et al. Macrophages transmit human immunodeficiency virus type 1 products to CD4-negative cells: involvement of matrix metalloproteinase 9. J. Virol. 81, 9078–9087 (2007).

    Article  CAS  Google Scholar 

  10. Kestler, H.W. III et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651–662 (1991).

    Article  CAS  Google Scholar 

  11. Peterlin, B.M. & Trono, D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat. Rev. Immunol. 3, 97–107 (2003).

    Article  CAS  Google Scholar 

  12. Fackler, O.T., Luo, W., Geyer, M., Alberts, A.S. & Peterlin, B.M. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol. Cell 3, 729–739 (1999).

    Article  CAS  Google Scholar 

  13. Peng, B. & Robert-Guroff, M. Deletion of N-terminal myristoylation site of HIV Nef abrogates both MHC-1 and CD4 down-regulation. Immunol. Lett. 78, 195–200 (2001).

    Article  CAS  Google Scholar 

  14. Blagoveshchenskaya, A.D., Thomas, L., Feliciangeli, S.F., Hung, C.H. & Thomas, G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111, 853–866 (2002).

    Article  CAS  Google Scholar 

  15. Thoulouze, M.I. et al. Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 24, 547–561 (2006).

    Article  CAS  Google Scholar 

  16. Burton, D.R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  17. Lane, H.C. et al. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N. Engl. J. Med. 309, 453–458 (1983).

    Article  CAS  Google Scholar 

  18. Moir, S. & Fauci, A.S. B cells in HIV infection and disease. Nat. Rev. Immunol. 9, 235–245 (2009).

    Article  CAS  Google Scholar 

  19. Binley, J.M. et al. Differential regulation of the antibody responses to Gag and Env proteins of human immunodeficiency virus type 1. J. Virol. 71, 2799–2809 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Regulier, E.G. et al. Persistent anti-gag, -Nef, and -Rev IgM levels as markers of the impaired functions of CD4+ T-helper lymphocytes during SIVmac251 infection of cynomolgus macaques. J. Acquir. Immune Defic. Syndr. 40, 1–11 (2005).

    Article  CAS  Google Scholar 

  21. Martinez, V. et al. Combination of HIV-1-specific CD4 Th1 cell responses and IgG2 antibodies is the best predictor for persistence of long-term nonprogression. J. Infect. Dis. 191, 2053–2063 (2005).

    Article  CAS  Google Scholar 

  22. Schafer, F. et al. Lack of simian immunodeficiency virus (SIV) specific IgA response in the intestine of SIV infected rhesus macaques. Gut 50, 608–614 (2002).

    Article  CAS  Google Scholar 

  23. Mestecky, J. et al. Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res. Hum. Retroviruses 20, 972–988 (2004).

    Article  CAS  Google Scholar 

  24. De Milito, A. et al. Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood 103, 2180–2186 (2004).

    Article  CAS  Google Scholar 

  25. Brenchley, J.M., Price, D.A. & Douek, D.C. HIV disease: fallout from a mucosal catastrophe? Nat. Immunol. 7, 235–239 (2006).

    Article  CAS  Google Scholar 

  26. He, B. et al. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J. Immunol. 176, 3931–3941 (2006).

    Article  CAS  Google Scholar 

  27. Swingler, S. et al. Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS. Cell Host Microbe 4, 63–76 (2008).

    Article  CAS  Google Scholar 

  28. Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205, 1797–1805 (2008).

    Article  CAS  Google Scholar 

  29. Titanji, K. et al. Loss of memory B cells impairs maintenance of long-term serological memory during HIV-1 infection. Blood 108, 1580–1587 (2006).

    Article  CAS  Google Scholar 

  30. Hart, M. et al. Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J. Immunol. 178, 8212–8220 (2007).

    Article  CAS  Google Scholar 

  31. Moir, S. et al. Perturbations in B cell responsiveness to CD4+ T cell help in HIV-infected individuals. Proc. Natl. Acad. Sci. USA 100, 6057–6062 (2003).

    Article  CAS  Google Scholar 

  32. Poudrier, J. et al. The AIDS disease of CD4C/HIV transgenic mice shows impaired germinal centers and autoantibodies and develops in the absence of IFN-gamma and IL-6. Immunity 15, 173–185 (2001).

    Article  CAS  Google Scholar 

  33. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  Google Scholar 

  34. Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat. Immunol. 8, 294–303 (2007).

    Article  CAS  Google Scholar 

  35. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    Article  CAS  Google Scholar 

  36. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  Google Scholar 

  37. Greenberg, M.E., Iafrate, A.J. & Skowronski, J. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J. 17, 2777–2789 (1998).

    Article  CAS  Google Scholar 

  38. Aiken, C., Konner, J., Landau, N.R., Lenburg, M.E. & Trono, D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76, 853–864 (1994).

    Article  CAS  Google Scholar 

  39. Greenberg, M.E. et al. Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J. 16, 6964–6976 (1997).

    Article  CAS  Google Scholar 

  40. Piguet, V. et al. Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the μ chain of adaptor complexes. EMBO J. 17, 2472–2481 (1998).

    Article  CAS  Google Scholar 

  41. Greenberg, M., DeTulleo, L., Rapoport, I., Skowronski, J. & Kirchhausen, T. A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr. Biol. 8, 1239–1242 (1998).

    Article  CAS  Google Scholar 

  42. Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  43. Rodriguez, B. et al. Plasma levels of B-lymphocyte stimulator increase with HIV disease progression. AIDS 17, 1983–1985 (2003).

    Article  Google Scholar 

  44. He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    Article  CAS  Google Scholar 

  45. Dyer, W.B. et al. Strong human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte activity in Sydney Blood Bank Cohort patients infected with nef-defective HIV type 1. J. Virol. 73, 436–443 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Burton, D.R. et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5, 233–236 (2004).

    Article  CAS  Google Scholar 

  47. Popovic, M. et al. Persistence of HIV-1 structural proteins and glycoproteins in lymph nodes of patients under highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 102, 14807–14812 (2005).

    Article  CAS  Google Scholar 

  48. Prost, S. et al. Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPARγ/STAT5 signaling pathway in macaques. J. Clin. Invest. 118, 1765–1775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schrofelbauer, B., Yu, Q., Zeitlin, S.G. & Landau, N.R. Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J. Virol. 79, 10978–10987 (2005).

    Article  CAS  Google Scholar 

  50. Santa-Marta, M., Aires da Silva, F., Fonseca, A.M., Rato, S. & Goncalves, J. HIV-1 Vif protein blocks the cytidine deaminase activity of B-cell specific AID in E. coli by a similar mechanism of action. Mol. Immunol. 44, 583–590 (2007).

    Article  CAS  Google Scholar 

  51. Begum, N.A. et al. Requirement of non-canonical activity of uracil DNA glycosylase for class switch recombination. J. Biol. Chem. 282, 731–742 (2007).

    Article  CAS  Google Scholar 

  52. Mann, J. et al. Functional analysis of HIV type 1 Nef reveals a role for PAK2 as a regulator of cell phenotype and function in the murine dendritic cell line, DC2.4. J. Immunol. 175, 6560–6569 (2005).

    Article  CAS  Google Scholar 

  53. Conboy, I.M., Manoli, D., Mhaiskar, V. & Jones, P.P. Calcineurin and vacuolar-type H+-ATPase modulate macrophage effector functions. Proc. Natl. Acad. Sci. USA 96, 6324–6329 (1999).

    Article  CAS  Google Scholar 

  54. Wiley, R.D. & Gummuluru, S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Natl. Acad. Sci. USA 103, 738–743 (2006).

    Article  CAS  Google Scholar 

  55. Costa, L.J. et al. Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 3, 33 (2006).

    Article  Google Scholar 

  56. Fujii, Y., Otake, K., Tashiro, M. & Adachi, A. Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett. 393, 93–96 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Stevenson (University of Massachusetts Medical School) for the ΔNef-ADA plasmid; B. Berkhout (Academic Medical Center) for the ΔNef-LAI plasmid; S.J. Burakoff (New York University) for the Nef-dsRED vector; M.G. Caron, (Duke University) for dominant negative dynamin-K44A and β-arrestin-2–V54D; J.G. Donaldson (National Institutes of Health) for dominant negative ARF6-T27N; Y. Zheng (Cincinnati Children's Hospital Medical Center) for dominant negative RhoA-N19, Cdc42-N17 and Rac1-N17; P. Marignani (Dalhousie University) for dominant negative Vav2-R/S; J.P. Moore (Weill Medical College of Cornell University) for the ΔNef-HIV-1–expressing NL4-3/9-7-dsRed plasmid; A. Pernis (Columbia University) for reagents; and all reagent donors for discussions. Supported by the US National Institutes of Health (AI07621 to W.X.; and R01 AI057653, R01 AI057653-S1 and R01 AI074378 to A.Ce.), The Irma T. Hirschl Charitable Trust (to A.Ce.), the Cornell Comprehensive Cancer Center (Chronic Lymphocytic Leukemia Research Center Award; to A.Ce.), the Ministerio de Ciencia e Innovación (Plan Nacional de Investigación Cientifica, Desarollo e Innovación Tecnológica SAF 2008-02725 to A.Ce.) and the Cancer Research Institute (to P.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

W.X. and P.A.S. designed and did research; B.H and K.C. did research and discussed data; J.S.S., W.B.D., A.Cha., D.M.K. and A.Chi. provided samples and discussed data; M.S., T.J.K. and R.W.S. provided reagents and did research; S.C.B. provided clinical data; L.C.-G. did electron microscopy; and A.Ce. designed research, discussed data and wrote the paper.

Corresponding author

Correspondence to Andrea Cerutti.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–2 and Supplementary Methods (PDF 3542 kb)

Supplementary Movie 1

Membrane ruffling and protrusions in Nef-containing macrophage-like cells. Three-dimensional animation of a THP-1 macrophage-like cell expressing Nef-eGFP. The movie was generated by acquiring up to 15 XY planes with 0.4 ∼ 0.5 μm Z spacing by confocal microscopy. Three-dimensional views were constructed with maximum projection and exported as 30-40 tiff images. QuickTime Pro software was used to edit images into movies. One of several experiments yielding similar results. (MOV 1681 kb)

Supplementary Movie 2

Nef-containing macrophage-like cells form short-range intercellular bridges. Three-dimensional animation of two THP-1 macrophage-like cells expressing Nef-eGFP. One of several experiments yielding similar results. (MOV 2355 kb)

Supplementary Movie 3

Macrophage-like cells can transfer cytoplasmic material to B cells through both short- and long-range intercellular mechanisms upon activation. Time-lapse animation of macrophage-like THP-1 cells pre-loaded with LysoTracker (green) and co-cultured with IgD+ B cells in the presence of LPS, a microbial product with macrophage- but not B cell-stimulating activity. Live-cell DIC and epifluores cence images were acquired every 20 sec to generate this time-lapse movie. One of 5 experiments yielding similar results. (MOV 4555 kb)

Supplementary Movie 4

HIV-1-infected primary macrophages form long-range Nef-trafficking intercellular conduits. Three-dimensional animation of two primary macrophages infected with HIV-1 ADA and stained for Nef (red) in the presence of the membrane-specific lectin WGA (green). One of several experiments yielding similar results. (MOV 2257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Santini, P., Sullivan, J. et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 10, 1008–1017 (2009). https://doi.org/10.1038/ni.1753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing