Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mina, an Il4 repressor, controls T helper type 2 bias

This article has been updated

Abstract

T helper type 2 (TH2) bias, which is the propensity of naive CD4+ T cells to differentiate into interleukin 4 (IL-4)-secreting TH2 cells, is a genetic trait that affects susceptibility to infectious, autoimmune and allergic diseases. TH2 bias correlates with the amount of IL-4 initially secreted by newly activated helper T cells that feeds back positively through the pathway of the IL-4 receptor and the transcription factors STAT6 and GATA-3 to drive TH2 development. Here we identify Mina, a member of the jumonji C (JmjC) protein family, as a genetic determinant of TH2 bias. Mina specifically bound to and repressed the Il4 promoter. Mina overexpression in transgenic mice impaired Il4 expression, whereas its knockdown in primary CD4+ T cells led to Il4 derepression. Our findings collectively provide mechanistic insight into an Il4-regulatory pathway that controls helper T cell differentiation and genetic variation in TH2 bias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mina is a Dice1.2 candidate gene.
Figure 2: Inverse correlation of Mina and Il4 expression in naive helper T cells.
Figure 3: Mina is transcriptionally regulated.
Figure 4: Mina haplotype can be used to predict TH2-bias phenotype.
Figure 5: Mina can bind to and repress transcription from the Il4 promoter.
Figure 6: Recruitment of Mina to the Il4 promoter requires NFAT.
Figure 7: A transient enforced increase in Mina impairs Il4 expression in CD4+ T cells.
Figure 8: Il4 expression in CD4+ T cells is constrained by Mina-dependent repression.

Similar content being viewed by others

Change history

  • 05 July 2009

    In the version of this article initially published online, the second corresponding author initials were incorrect. The correct initials are “M.Ku.” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  Google Scholar 

  2. Rook, G.A. Th2 cytokines in susceptibility to tuberculosis. Curr. Mol. Med. 7, 327–337 (2007).

    Article  CAS  Google Scholar 

  3. Wilson, K.T. & Fantry, G.T. Pathogenesis of Helicobacter pylori infection. Curr. Opin. Gastroenterol. 15, 66–71 (1999).

    Article  CAS  Google Scholar 

  4. Umetsu, D.T. & Dekruyff, R.H. Immune dysregulation in asthma. Curr. Opin. Immunol. 18, 727–732 (2006).

    Article  CAS  Google Scholar 

  5. Crane, I.J. & Forrester, J.V. Th1 and Th2 lymphocytes in autoimmune disease. Crit. Rev. Immunol. 25, 75–102 (2005).

    Article  CAS  Google Scholar 

  6. Ngoc, P.L., Gold, D.R., Tzianabos, A.O., Weiss, S.T. & Celedon, J.C. Cytokines, allergy, and asthma. Curr. Opin. Allergy Clin. Immunol. 5, 161–166 (2005).

    Article  CAS  Google Scholar 

  7. Pearce, E.J. et al. Th2 response polarization during infection with the helminth parasite Schistosoma mansoni. Immunol. Rev. 201, 117–126 (2004).

    Article  CAS  Google Scholar 

  8. Maizels, R.M. et al. Helminth parasites–masters of regulation. Immunol. Rev. 201, 89–116 (2004).

    Article  CAS  Google Scholar 

  9. Wynn, T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  Google Scholar 

  10. Swain, S.L., Weinberg, A.D., English, M. & Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  11. Mowen, K.A. & Glimcher, L.H. Signaling pathways in Th2 development. Immunol. Rev. 202, 203–222 (2004).

    Article  CAS  Google Scholar 

  12. Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L. & Paul, W.E. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 16, 3–10 (2006).

    Article  CAS  Google Scholar 

  13. Le Gros, G., Ben-Sasson, S.Z., Seder, R., Finkelman, F.D. & Paul, W.E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4- producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  CAS  Google Scholar 

  14. Bix, M., Wang, Z.E., Thiel, B., Schork, N.J. & Locksley, R.M. Genetic regulation of commitment to interleukin 4 production by a CD4+ T cell-intrinsic mechanism. J. Exp. Med. 188, 2289–2299 (1998).

    Article  CAS  Google Scholar 

  15. Noben-Trauth, N., Hu-Li, J. & Paul, W.E. IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation. Eur. J. Immunol. 32, 1428–1433 (2002).

    Article  CAS  Google Scholar 

  16. Yagi, R. et al. The IL-4 production capability of different strains of naive CD4+ T cells controls the direction of the TH cell response. Int. Immunol. 14, 1–11 (2002).

    Article  CAS  Google Scholar 

  17. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  18. Liu, Z. et al. Requirements for the development of IL-4-producing T cells during intestinal nematode infections: what it takes to make a Th2 cell in vivo. Immunol. Rev. 201, 57–74 (2004).

    Article  CAS  Google Scholar 

  19. Hsieh, C.S., Macatonia, S.E., O'Garra, A. & Murphy, K.M. T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181, 713–721 (1995).

    Article  CAS  Google Scholar 

  20. Yagi, J. et al. Genetic background influences Th cell differentiation by controlling the capacity for IL-2-induced IL-4 production by naive CD4+ T cells. Int. Immunol. 18, 1681–1690 (2006).

    Article  CAS  Google Scholar 

  21. Reiner, S.L. & Locksley, R.M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177 (1995).

    Article  CAS  Google Scholar 

  22. Yamashita, M., Onodera, A. & Nakayama, T. Immune mechanisms of allergic airway disease: regulation by transcription factors. Crit. Rev. Immunol. 27, 539–546 (2007).

    Article  CAS  Google Scholar 

  23. Kuroda, E., Sugiura, T., Zeki, K., Yoshida, Y. & Yamashita, U. Sensitivity difference to the suppressive effect of prostaglandin E2 among mouse strains: a possible mechanism to polarize Th2 type response in BALB/c mice. J. Immunol. 164, 2386–2395 (2000).

    Article  CAS  Google Scholar 

  24. Gorham, J.D. et al. Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses. Proc. Natl. Acad. Sci. USA 93, 12467–12472 (1996).

    Article  CAS  Google Scholar 

  25. Guler, M.L. et al. Tpm1, a locus controlling IL-12 responsiveness, acts by a cell-autonomous mechanism. J. Immunol. 162, 1339–1347 (1999).

    CAS  PubMed  Google Scholar 

  26. Kosarova, M., Havelkova, H., Krulova, M., Demant, P. & Lipoldova, M. The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics 49, 134–141 (1999).

    Article  CAS  Google Scholar 

  27. Zhang, F. et al. A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. J. Immunol. 171, 4613–4620 (2003).

    Article  CAS  Google Scholar 

  28. Baguet, A., Epler, J., Wen, K.W. & Bix, M. A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. J. Exp. Med. 200, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  29. Choi, P. et al. Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes Immun. 6, 290–297 (2005).

    Article  CAS  Google Scholar 

  30. Eppig, J.T., Blake, J.A., Bult, C.J., Kadin, J.A. & Richardson, J.E. The mouse genome database (MGD): new features facilitating a model system. Nucleic Acids Res. 35, D630–D637 (2007).

    Article  CAS  Google Scholar 

  31. Lipson, K.E. & Baserga, R. Transcriptional activity of the human thymidine kinase gene determined by a method using the polymerase chain reaction and an intron-specific probe. Proc. Natl. Acad. Sci. USA 86, 9774–9777 (1989).

    Article  CAS  Google Scholar 

  32. Tokoyoda, K., Takemoto, Y., Nakayama, T., Arai, T. & Kubo, M. Synergism between the calmodulin-binding and autoinhibitory domains on calcineurin is essential for the induction of their phosphatase activity. J. Biol. Chem. 275, 11728–11734 (2000).

    Article  CAS  Google Scholar 

  33. Bruhn, K.W., Nelms, K., Boulay, J.L., Paul, W.E. & Lenardo, M.J. Molecular dissection of the mouse interleukin-4 promoter. Proc. Natl. Acad. Sci. USA (1993).

  34. Chuvpilo, S. et al. Multiple closely-linked NFAT/octamer and HMG I(Y) binding sites are part of the interleukin-4 promoter. Nucleic Acids Res. 21, 5694–5704 (1993).

    Article  CAS  Google Scholar 

  35. Farrar, J.J. et al. Thymoma production of T cell growth factor (Interleukin 2). J. Immunol. 125, 2555–2558 (1980).

    CAS  PubMed  Google Scholar 

  36. Iritani, B.M., Forbush, K.A., Farrar, M.A. & Perlmutter, R.M. Control of B cell development by Ras-mediated activation of Raf. EMBO J. 16, 7019–7031 (1997).

    Article  CAS  Google Scholar 

  37. Klose, R.J., Kallin, E.M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7, 715–727 (2006).

    Article  CAS  Google Scholar 

  38. Chang, B., Chen, Y., Zhao, Y. & Bruick, R.K. JMJD6 is a histone arginine demethylase. Science 318, 444–447 (2007).

    Article  CAS  Google Scholar 

  39. Dann, C.E., Bruick, R.K. & Deisenhofer, J. Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl. Acad. Sci. USA 99, 15351–15356 (2002).

    Article  CAS  Google Scholar 

  40. Elkins, J.M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J. Biol. Chem. 278, 1802–1806 (2003).

    Article  CAS  Google Scholar 

  41. Baguet, A. & Bix, M. Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc. Natl. Acad. Sci. USA 101, 11410–11415 (2004).

    Article  CAS  Google Scholar 

  42. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    Article  CAS  Google Scholar 

  43. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  Google Scholar 

  44. Mowen, K.A., Schurter, B.T., Fathman, J.W., David, M. & Glimcher, L.H. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol. Cell 15, 559–571 (2004).

    Article  CAS  Google Scholar 

  45. Nishimune, Y., Ohta, K., Tanaka, H., Iida, H. & Inokuchi, T. Expression of Mina53, a product of a Myc target gene in mouse testis. Int. J. Androl. 29, 323–330 (2006).

    Article  Google Scholar 

  46. Tsuneoka, M. et al. Mina53 as a potential prognostic factor for esophageal squamous cell carcinoma. Clin. Cancer Res. 10, 7347–7356 (2004).

    Article  CAS  Google Scholar 

  47. Teye, K. et al. Increased expression of a Myc target gene Mina53 in human colon cancer. Am. J. Pathol. 164, 205–216 (2004).

    Article  CAS  Google Scholar 

  48. Tsuneoka, M., Koda, Y., Soejima, M., Teye, K. & Kimura, H. A novel myc target gene, mina53, that is involved in cell proliferation. J. Biol. Chem. 277, 35450–35459 (2002).

    Article  CAS  Google Scholar 

  49. Dubchak, I. et al. Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res. 10, 1304–1306 (2000).

    Article  CAS  Google Scholar 

  50. Hijikata, A. et al. Construction of an open-access database that integrates cross-reference information from the transcriptome and proteome of immune cells. Bioinformatics 23, 2934–2941 (2007).

    Article  CAS  Google Scholar 

  51. Seki, N. et al. IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation. J. Immunol. 172, 6158–6166 (2004).

    Article  CAS  Google Scholar 

  52. Rooney, J.W., Sun, Y.L., Glimcher, L.H. & Hoey, T. Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation. Mol. Cell. Biol. 15, 6299–6310 (1995).

    Article  CAS  Google Scholar 

  53. Ragione, F.D. et al. p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J. Biol. Chem. 278, 23360–23368 (2003).

    Article  Google Scholar 

  54. Koyanagi, M. et al. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in TH1 cells. J. Biol. Chem. 280, 31470–31477 (2005).

    Article  CAS  Google Scholar 

  55. Weinmann, A.S., Bartley, S.M., Zhang, T., Zhang, M.Q. & Farnham, P.J. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol. 21, 6820–6832 (2001).

    Article  CAS  Google Scholar 

  56. Attar, R.M., Macdonald-Bravo, H., Raventos-Suarez, C., Durham, S.K. & Bravo, R. Expression of constitutively active IκBβ in T cells of transgenic mice: persistent NF-κB activity is required for T-cell immune responses. Mol. Cell. Biol. 18, 477–487 (1998).

    Article  CAS  Google Scholar 

  57. Summerton, J.E. Endo-Porter: a novel reagent for safe, effective delivery of substances into cells. Ann. NY Acad. Sci. 1058, 62–75 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Abe (Science University of Tokyo) for hybridoma PV-1; J. Allison (Memorial Sloan Kettering Cancer) for hybridoma 37N51.1; G. Trinchieri (US National Insitutes of Health) for hybridoma C17.8; A. Matsuno, M. Nakamura, M. Natsume, J. Epler, Y. Zhang, N. Li, S. Brown and R. Cross for technical help; J. Partridge for discussions; and D. Green, H. Beere and J. Kang (U. Mass. Medical School) for comments on the manuscript. Supported by the Cancer Research Institute (M.B.), the Burroughs Wellcome Fund (M.B.), American Lebanese Syrian Associated Charities (M.B.), the RIKEN Research Center for Allergy and Immunology International Collaboration Award Program (M.B. and M.Ku.), a Grant-in-Aid for Scientific Research (B) (M.Ku.), a Grant-in-Aid for Scientific Research on Priority Areas of the Ministry of Education, Culture, Sports, Science, and Technology (Japan) (M.Ku.), the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (M.Ku.) and the US National Institutes of Health (AI048636 to M.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.O. and M.V.S. did the experiments; L.C. did the Mina transcriptional analysis and Figures 2b and 3b and Supplementary Figure 2; M.Ka. did the Mina immunoblots; X.S. analyzed the C16D2/8D mice; Y.S. did the transgenic experiments; Y.S. and L.C. maintained the mouse colonies; O.O., H.K. and A.H. did the expression profiling; M.O., M.V.S., M.Ku and M.B. designed and conceptualized the research and analyzed the data; and M.B. prepared the manuscript.

Corresponding authors

Correspondence to Masato Kubo or Mark Bix.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 958 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, M., Van Stry, M., Chung, L. et al. Mina, an Il4 repressor, controls T helper type 2 bias. Nat Immunol 10, 872–879 (2009). https://doi.org/10.1038/ni.1747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing