Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon

Abstract

E3 ubiquitin ligases are important in both innate and adaptive immunity. Here we report that Nrdp1, an E3 ubiquitin ligase, inhibited the production of proinflammatory cytokines but increased interferon-β production in Toll-like receptor–triggered macrophages by suppressing adaptor MyD88–dependent activation of transcription factors NF-κB and AP-1 while promoting activation of the kinase TBK1 and transcription factor IRF3. Nrdp1 directly bound and polyubiquitinated MyD88 and TBK1, which led to degradation of MyD88 and activation of TBK1. Knockdown of Nrdp1 inhibited the degradation of MyD88 and the activation of TBK1 and IRF3. Nrdp1-transgenic mice showed resistance to lipopolysaccharide-induced endotoxin shock and to infection with vesicular stomatitis virus. Our data suggest that Nrdp1 functions as both an adaptor protein and an E3 unbiquitin ligase to regulate TLR responses in different ways.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nrdp1 inhibits TLR-induced production of proinflammatory cytokines but promotes the production of type I interferon in macrophages.
Figure 2: Nrdp1 protects mice from lethal LPS challenge.
Figure 3: Nrdp1 protects mice from VSV infection both in vitro and in vivo.
Figure 4: Nrdp1 inhibits TLR-induced activation of NFκB and AP-1 reporters but promotes the transactivation of IRF3 and IFN-β reporters.
Figure 5: Nrdp1 binds MyD88 and TBK1.
Figure 6: Nrdp1 polyubiquitinates MyD88 and TBK1.
Figure 7: Nrdp1 inhibits the TLR-induced MyD88-dependent pathway by degrading MyD88.
Figure 8: Nrdp1 promotes the activation of TBK1 and IRF3.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  Article  Google Scholar 

  2. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    CAS  Article  Google Scholar 

  3. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    CAS  Article  Google Scholar 

  4. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    CAS  Article  Google Scholar 

  5. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  Article  Google Scholar 

  6. Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    CAS  Article  Google Scholar 

  7. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    CAS  Article  Google Scholar 

  8. Yoshida, H., Jono, H., Kai, H. & Li, J.D. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 and TRAF7. J. Biol. Chem. 280, 41111–41121 (2005).

    CAS  Article  Google Scholar 

  9. Zhang, M. et al. Regulation of IκB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 283, 18621–18626 (2008).

    CAS  Article  Google Scholar 

  10. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    CAS  Article  Google Scholar 

  11. An, H. et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol. 9, 542–550 (2008).

    CAS  Article  Google Scholar 

  12. Liu, Y.C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nat. Rev. Immunol. 5, 941–952 (2005).

    CAS  Article  Google Scholar 

  13. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    CAS  Article  Google Scholar 

  14. Sun, S.C. Deubiquitylation and regulation of the immune response. Nat. Rev. Immunol. 8, 501–511 (2008).

    CAS  Article  Google Scholar 

  15. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    CAS  Article  Google Scholar 

  16. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  Article  Google Scholar 

  17. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  Article  Google Scholar 

  18. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000).

    CAS  Article  Google Scholar 

  19. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    CAS  Article  Google Scholar 

  20. Häcker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  Google Scholar 

  21. Gatot, J.S. et al. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKε-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J. Biol. Chem. 282, 31131–31146 (2007).

    CAS  Article  Google Scholar 

  22. Tanaka, T., Grusby, M.J. & Kaisho, T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat. Immunol. 8, 584–591 (2007).

    CAS  Article  Google Scholar 

  23. Bachmaier, K. et al. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nat. Med. 13, 920–926 (2007).

    CAS  Article  Google Scholar 

  24. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat. Immunol. 9, 254–262 (2008).

    CAS  Article  Google Scholar 

  25. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat. Immunol. 9, 245–253 (2008).

    CAS  Article  Google Scholar 

  26. Abdullah, J.M., Li, X., Nachtman, R.G. & Jurecic, R. FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors. Blood Cells Mol. Dis. 27, 320–333 (2001).

    CAS  Article  Google Scholar 

  27. Diamonti, A.J. et al. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc. Natl. Acad. Sci. USA 99, 2866–2871 (2002).

    CAS  Article  Google Scholar 

  28. Qiu, X.B. & Goldberg, A.L. Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc. Natl. Acad. Sci. USA 99, 14843–14848 (2002).

    CAS  Article  Google Scholar 

  29. Qiu, X.B., Markant, S.L., Yuan, J. & Goldberg, A.L. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J. 23, 800–810 (2004).

    CAS  Article  Google Scholar 

  30. Cao, Z., Wu, X., Yen, L., Sweeney, C. & Carraway, K.L., III. Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol. Cell. Biol. 27, 2180–2188 (2007).

    CAS  Article  Google Scholar 

  31. Yen, L. et al. Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res. 66, 11279–11286 (2006).

    CAS  Article  Google Scholar 

  32. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article  Google Scholar 

  33. Pomerantz, J.L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    CAS  Article  Google Scholar 

  34. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    CAS  Article  Google Scholar 

  35. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    CAS  Article  Google Scholar 

  36. Baccala, R., Hoebe, K., Kono, D.H., Beutler, B. & Theofilopoulos, A.N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    CAS  Article  Google Scholar 

  37. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  Article  Google Scholar 

  38. McWhirter, S.M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101, 233–238 (2004).

    CAS  Article  Google Scholar 

  39. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    CAS  Article  Google Scholar 

  40. Chu, W.M. et al. JNK2 and IKKβ are required for activating the innate response to viral infection. Immunity 11, 721–731 (1999).

    CAS  Article  Google Scholar 

  41. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600 (2007).

    CAS  Article  Google Scholar 

  42. Wang, Y. et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 110, 962–971 (2007).

    CAS  Article  Google Scholar 

  43. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    CAS  Article  Google Scholar 

  44. Xu, L.G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    CAS  Article  Google Scholar 

  45. Ciavarra, R.P. et al. Impact of macrophage and dendritic cell subset elimination on antiviral immunity, viral clearance and production of type 1 interferon. Virology 342, 177–189 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Akira (Research Institute for Microbial Diseases) for Myd88−/− mice; X. Yang (Beijing Institute of Biotechnology) for pIRES2-EGFP vector; Z.J. Chen (University of Texas Southwestern Medical Center) for TAK1 plasmid; T. Maniatis (Harvard University) for TBK1 and kinase-inactive TBK1 plasmids; S.J. Martin (Trinity College) for pGL3.5XêB-luciferase reporter plasmid; T Fujita (Tokyo Metropolitan Institute of Medical Science) for IRF3 reporter plasmids; Z. Wang for help in preparing Nrdp1-TG mice; H. An and W. Zhang for discussions; and Y. Li and M. Jin for technical assistance. Supported by the National Natural Science Foundation of China (30721091, 30572122 and 30771118), the Foundation for the Author of National Excellent Doctoral Dissertation of China (200775), the 973 National Key Basic Research Program of China (2007CB512403) and the Shanghai Committee of Science and Technology (06DJ14011 and 07QA14067).

Author information

Authors and Affiliations

Authors

Contributions

X.C. and T.C. designed and supervised the experiments; C.W., T.C., M.Y., J.Z., N.L. and X.X. did experiments and analyzed data; and X.C. and T.C. wrote the manuscript.

Corresponding author

Correspondence to Xuetao Cao.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 1799 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, C., Chen, T., Zhang, J. et al. The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol 10, 744–752 (2009). https://doi.org/10.1038/ni.1742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1742

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing