Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response

Abstract

T helper type 2 (TH2)-mediated immune responses are induced after infection with multicellular parasites and can be triggered by a variety of allergens. The mechanisms of induction and the antigen-presenting cells involved in the activation of TH2 responses remain poorly defined, and the innate immune sensing pathways activated by parasites and allergens are largely unknown. Basophils are required for the in vivo induction of TH2 responses by protease allergens. Here we show that basophils also function as antigen-presenting cells. We show that although dendritic cells were dispensable for allergen-induced activation of TH2 responses in vitro and in vivo, antigen presentation by basophils was necessary and sufficient for this. Thus, basophils function as antigen-presenting cells for TH2 differentiation in response to protease allergens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basophils are necessary for TH2 differentiation in vitro, but DCs are not.
Figure 2: Basophil-mediated TH2 differentiation in vitro is dependent on IL-4.
Figure 3: Basophils express and upregulate MHC class II after papain stimulation and can form synapses with T cells in vitro.
Figure 4: Basophils are able to endocytose soluble antigens but not particulate antigens.
Figure 5: Migratory DCs are not necessary for basophil migration or TH2 differentiation after papain immunization.
Figure 6: DCs and DC-derived MHC class II are not required for TH2 differentiation after papain immunization.
Figure 7: Antigen presentation by basophils is sufficient for TH2 differentiation.

Similar content being viewed by others

References

  1. Zhu, J. & Paul, W.E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569 (2008).

    Article  CAS  Google Scholar 

  2. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  3. Brown, G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  Google Scholar 

  4. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  Google Scholar 

  5. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  6. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  7. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  8. Joffre, O., Nolte, M.A., Sporri, R. & Reis e Sousa, C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).

    Article  CAS  Google Scholar 

  9. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    Article  Google Scholar 

  10. McKerrow, J.H., Caffrey, C., Kelly, B., Loke, P. & Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol. Mech. Dis. 1, 497–536 (2006).

    Article  CAS  Google Scholar 

  11. McGuinness, D.H., Dehal, P.K. & Pleass, R.J. Pattern recognition molecules and innate immunity to parasites. Trends Parasitol. 19, 312–319 (2003).

    Article  CAS  Google Scholar 

  12. Chambers, L. et al. Enzymatically active papain preferentially induces an allergic response in mice. Biochem. Biophys. Res. Commun. 253, 837–840 (1998).

    Article  CAS  Google Scholar 

  13. Gough, L., Schulz, O., Sewell, H.F. & Shakib, F. The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J. Exp. Med. 190, 1897–1902 (1999).

    Article  CAS  Google Scholar 

  14. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    Article  CAS  Google Scholar 

  15. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  16. Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  17. Steimle, V., Otten, L.A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993).

    Article  CAS  Google Scholar 

  18. Chang, C.H. & Flavell, R.A. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J. Exp. Med. 181, 765–767 (1995).

    Article  CAS  Google Scholar 

  19. Chang, C.H., Fontes, J.D., Peterlin, M. & Flavell, R.A. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J. Exp. Med. 180, 1367–1374 (1994).

    Article  CAS  Google Scholar 

  20. Muhlethaler-Mottet, A., Otten, L.A., Steimle, V. & Mach, B. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16, 2851–2860 (1997).

    Article  CAS  Google Scholar 

  21. Reith, W. LeibundGut-Landmann, S. & Waldburger, J.M. Regulation of MHC class II gene expression by the class II transactivator. Nat. Rev. Immunol. 5, 793–806 (2005).

    Article  CAS  Google Scholar 

  22. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  23. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  24. Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  Google Scholar 

  25. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  Google Scholar 

  26. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  27. Zammit, D.J., Cauley, L.S., Pham, Q.M. & Lefrancois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570 (2005).

    Article  CAS  Google Scholar 

  28. Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    Article  CAS  Google Scholar 

  29. Lemos, M.P., Fan, L., Lo, D. & Laufer, T.M. CD8α+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity. J. Immunol. 171, 5077–5084 (2003).

    Article  CAS  Google Scholar 

  30. Lemos, M.P., Esquivel, F., Scott, P. & Laufer, T.M. MHC class II expression restricted to CD8α+ and CD11b+ dendritic cells is sufficient for control of Leishmania major. J. Exp. Med. 199, 725–730 (2004).

    Article  CAS  Google Scholar 

  31. Domen, J., Gandy, K.L. & Weissman, I.L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91, 2272–2282 (1998).

    CAS  PubMed  Google Scholar 

  32. Tsujimura, Y. et al. Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity 28, 581–589 (2008).

    Article  CAS  Google Scholar 

  33. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  Google Scholar 

  34. Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  Google Scholar 

  35. Sullivan, B.M. & Locksley, R.M. Basophils: a nonredundant contributor to host immunity. Immunity 30, 12–20 (2009).

    Article  CAS  Google Scholar 

  36. Hida, S., Tadachi, M., Saito, T. & Taki, S. Negative control of basophil expansion by IRF-2 critical for the regulation of Th1/Th2 balance. Blood 106, 2011–2017 (2005).

    Article  CAS  Google Scholar 

  37. Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol. 9, 733–742 (2008).

    Article  CAS  Google Scholar 

  38. Karasuyama, H., Mukai, K., Tsujimura, Y. & Obata, K. Newly discovered roles for basophils: a neglected minority gains new respect. Nat. Rev. Immunol. 9, 9–13 (2009).

    Article  CAS  Google Scholar 

  39. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    Article  CAS  Google Scholar 

  40. Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol. 111, 136–143 (1998).

    Article  CAS  Google Scholar 

  41. Mack, M. et al. Identification of antigen-capturing cells as basophils. J. Immunol. 174, 735–741 (2005).

    Article  CAS  Google Scholar 

  42. Min, B. Basophils: what they 'can do' versus what they 'actually do'. Nat. Immunol. 9, 1333–1339 (2008).

    Article  CAS  Google Scholar 

  43. Eisenbarth, S.C. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002).

    Article  CAS  Google Scholar 

  44. Piggott, D.A. et al. MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J. Clin. Invest. 115, 459–467 (2005).

    Article  CAS  Google Scholar 

  45. Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2008).

    Article  Google Scholar 

  46. Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085–2089 (2008).

    Article  CAS  Google Scholar 

  47. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  48. Li, H., Nookala, S. & Re, F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J. Immunol. 178, 5271–5276 (2007).

    Article  CAS  Google Scholar 

  49. Li, H., Willingham, S.B., Ting, J.P. & Re, F. Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008).

    Article  CAS  Google Scholar 

  50. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  Google Scholar 

  51. Reese, T.A. et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 92–96 (2007).

    Article  CAS  Google Scholar 

  52. MacDonald, A.S., Straw, A.D., Bauman, B. & Pearce, E.J. CD8 dendritic cell activation status plays an integral role in influencing Th2 response development. J. Immunol. 167, 1982–1988 (2001).

    Article  CAS  Google Scholar 

  53. Kambayashi, T. et al. Indirect involvement of allergen-captured mast cells in antigen presentation. Blood 111, 1489–1496 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Weissman (Stanford University) for H-2k–Bcl-2 mice; K. Bottomly (Yale University) for DO11.10 × 4get transgenic mice; A. Iwasaki (Yale University) for mice and reagents; S. Holley, C. Annicelli and M. Kotas for technical assistance; and J. Kagan and D. Hargreaves for experimental input. Supported by the US National Institutes of Health (Medical Scientist Training Program TG2T32GM07205 to C.L.S. and R01 AI46688 and R01 AI055502 to R.M.), the Howard Hughes Medical Institute (R.M.) and the Sandler Program in Asthma Research.

Author information

Authors and Affiliations

Authors

Contributions

C.L.S. and R.M. designed the experiments; C.L.S., N.-Q.C., S.Y. and S.A.N. did the experiments; C.L.S. and R.M. analyzed the data and wrote the manuscript; and T.M.L. provided CD11c-IABB mice.

Corresponding author

Correspondence to Ruslan Medzhitov.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 8178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokol, C., Chu, NQ., Yu, S. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10, 713–720 (2009). https://doi.org/10.1038/ni.1738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing