Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance

Abstract

Although cytotoxic T lymphocytes (CTLs) in people infected with human immunodeficiency virus type 1 can potentially target multiple virus epitopes, the same few are recognized repeatedly. We show here that CTL immunodominance in regions of the human immunodeficiency virus type 1 group-associated antigen proteins p17 and p24 correlated with epitope abundance, which was strongly influenced by proteasomal digestion profiles, affinity for the transporter protein TAP, and trimming mediated by the endoplasmatic reticulum aminopeptidase ERAAP, and was moderately influenced by HLA affinity. Structural and functional analyses demonstrated that proteasomal cleavage 'preferences' modulated the number and length of epitope-containing peptides, thereby affecting the response avidity and clonality of T cells. Cleavage patterns were affected by both flanking and intraepitope CTL-escape mutations. Our analyses show that antigen processing shapes CTL response hierarchies and that viral evolution modifies cleavage patterns and suggest strategies for in vitro vaccine optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLYNTVATL evolution and HIV p17 epitopes.
Figure 2: Proteasomal digestion of p17.
Figure 3: Antigen processing and presentation of p17.
Figure 4: CTL recognition of SLYNTVATL sequence and length variants.
Figure 5: Structure of HLA-A*0201–SLFNTVATLY and comparison with previously determined 9–amino acid SLYNTVATL variant structures.
Figure 6: Antigen processing of p24.
Figure 7: Cell line–recognition patterns of KK10 peptide forms.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Yewdell, J.W. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25, 533–543 (2006).

    Article  CAS  Google Scholar 

  2. Altfeld, M. et al. HLA alleles associated with delayed progression to AIDS contribute strongly to the initial CD8+ T cell response against HIV-1. PLoS Med. 3, e403 (2006).

    Article  Google Scholar 

  3. Bihl, F. et al. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses. J. Immunol. 176, 4094–4101 (2006).

    Article  CAS  Google Scholar 

  4. Goulder, P.J. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  Google Scholar 

  5. Chen, W., Anton, L.C., Bennink, J.R. & Yewdell, J.W. Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12, 83–93 (2000).

    Article  CAS  Google Scholar 

  6. Kloetzel, P.M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179–187 (2001).

    Article  CAS  Google Scholar 

  7. Tenzer, S. et al. Quantitative analysis of prion-protein degradation by constitutive and immuno-20S proteasomes indicates differences correlated with disease susceptibility. J. Immunol. 172, 1083–1091 (2004).

    Article  CAS  Google Scholar 

  8. Toes, R.E. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12 (2001).

    Article  CAS  Google Scholar 

  9. Van den Eynde, B.J. & Morel, S. Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr. Opin. Immunol. 13, 147–153 (2001).

    Article  CAS  Google Scholar 

  10. HIV Molecular Immunology 2006/2007 (eds. Korber, B.T.M. et al.) 53–248 (Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, 2006–2007).

  11. Iversen, A.K. et al. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope. Nat. Immunol. 7, 179–189 (2006).

    Article  CAS  Google Scholar 

  12. Goulder, P.J. & Watkins, D.I. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat. Rev. Immunol. 8, 619–630 (2008).

    Article  CAS  Google Scholar 

  13. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    Article  CAS  Google Scholar 

  14. Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

    Article  CAS  Google Scholar 

  15. Schneidewind, A. et al. Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. J. Virol. 82, 5594–5605 (2008).

    Article  CAS  Google Scholar 

  16. Schneidewind, A. et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J. Virol. 81, 12382–12393 (2007).

    Article  CAS  Google Scholar 

  17. Draenert, R. et al. Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. J. Exp. Med. 199, 905–915 (2004).

    Article  CAS  Google Scholar 

  18. Milicic, A. et al. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. J. Immunol. 175, 4618–4626 (2005).

    Article  CAS  Google Scholar 

  19. Zimbwa, P. et al. Precise identification of a human immunodeficiency virus type 1 antigen processing mutant. J. Virol. 81, 2031–2038 (2007).

    Article  CAS  Google Scholar 

  20. Le Gall, S., Stamegna, P. & Walker, B.D. Portable flanking sequences modulate CTL epitope processing. J. Clin. Invest. 117, 3563–3575 (2007).

    Article  CAS  Google Scholar 

  21. Leslie, A. et al. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J. Exp. Med. 201, 891–902 (2005).

    Article  CAS  Google Scholar 

  22. Ossendorp, F. et al. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5, 115–124 (1996).

    Article  CAS  Google Scholar 

  23. Shimbara, N. et al. Contribution of proline residue for efficient production of MHC class I ligands by proteasomes. J. Biol. Chem. 273, 23062–23071 (1998).

    Article  CAS  Google Scholar 

  24. Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P.M. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001).

    Article  CAS  Google Scholar 

  25. Gubler, B. et al. Substrate selection by transporters associated with antigen processing occurs during peptide binding to TAP. Mol. Immunol. 35, 427–433 (1998).

    Article  CAS  Google Scholar 

  26. van Endert, P.M. et al. The peptide-binding motif for the human transporter associated with antigen processing. J. Exp. Med. 182, 1883–1895 (1995).

    Article  CAS  Google Scholar 

  27. Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I–presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  28. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  Google Scholar 

  29. Altfeld, M. et al. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J. Exp. Med. 193, 169–180 (2001).

    Article  CAS  Google Scholar 

  30. Lee, J.K. et al. T cell cross-reactivity and conformational changes during TCR engagement. J. Exp. Med. 200, 1455–1466 (2004).

    Article  CAS  Google Scholar 

  31. Martinez-Hackert, E. et al. Structural basis for degenerate recognition of natural HIV peptide variants by cytotoxic lymphocytes. J. Biol. Chem. 281, 20205–20212 (2006).

    Article  CAS  Google Scholar 

  32. Streeck, H. et al. Recognition of a defined region within p24 gag by CD8+ T cells during primary human immunodeficiency virus type 1 infection in individuals expressing protective HLA class I alleles. J. Virol. 81, 7725–7731 (2007).

    Article  CAS  Google Scholar 

  33. Bouillot, M. et al. Physical association between MHC class I molecules and immunogenic peptides. Nature 339, 473–475 (1989).

    Article  CAS  Google Scholar 

  34. Huet, S. et al. Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27. Int. Immunol. 2, 311–316 (1990).

    Article  CAS  Google Scholar 

  35. Jardetzky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R. & Wiley, D.C. Identification of self peptides bound to purified HLA-B27. Nature 353, 326–329 (1991).

    Article  CAS  Google Scholar 

  36. Nixon, D.F. et al. HIV-1 Gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336, 484–487 (1988).

    Article  CAS  Google Scholar 

  37. Urban, R.G. et al. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc. Natl. Acad. Sci. USA 91, 1534–1538 (1994).

    Article  CAS  Google Scholar 

  38. Betts, M.R. et al. Putative immunodominant human immunodeficiency virus-specific CD8+ T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J. Virol. 74, 9144–9151 (2000).

    Article  CAS  Google Scholar 

  39. Altfeld, M.A. et al. Identification of dominant optimal HLA-B60- and HLA-B61-restricted cytotoxic T-lymphocyte (CTL) epitopes: rapid characterization of CTL responses by enzyme-linked immunospot assay. J. Virol. 74, 8541–8549 (2000).

    Article  CAS  Google Scholar 

  40. Streeck, H. et al. Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med. 5, e100 (2008).

    Article  Google Scholar 

  41. Almeida, J.R. et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 204, 2473–2485 (2007).

    Article  CAS  Google Scholar 

  42. Wearsch, P.A. & Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat. Immunol. 8, 873–881 (2007).

    Article  CAS  Google Scholar 

  43. Brumme, Z.L. et al. Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog. 3, e94 (2007).

    Article  Google Scholar 

  44. Goulder, P.J. & Watkins, D.I. HIV and SIV CTL escape: implications for vaccine design. Nat. Rev. Immunol. 4, 630–640 (2004).

    Article  CAS  Google Scholar 

  45. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  Google Scholar 

  46. Collins, E.J., Garboczi, D.N. & Wiley, D.C. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371, 626–629 (1994).

    Article  CAS  Google Scholar 

  47. Wilson, J.D. et al. Oligoclonal expansions of CD8+ T cells in chronic HIV infection are antigen specific. J. Exp. Med. 188, 785–790 (1998).

    Article  CAS  Google Scholar 

  48. Gao, X. et al. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat. Med. 11, 1290–1292 (2005).

    Article  CAS  Google Scholar 

  49. Burgevin, A. et al. A detailed analysis of the murine TAP transporter substrate specificity. PLoS ONE 3, e2402 (2008).

    Article  Google Scholar 

  50. Sylvester-Hvid, C. et al. Establishment of a quantitative ELISA capable of determining peptide-MHC class I interaction. Tissue Antigens 59, 251–258 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients for donating samples; B. Baadegaard and L.P. Jensen for patient management; D. Hass, T. Rostron, J. Frankland and J. Forsch for technical assistance; and N. Willcox for discussions. Supported by the Novo Nordisk Foundation, the Danish AIDS foundation, the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 490, E6, Z3), the Genomes2Vaccines Specific Targeted Research Project, Sixth Framework Programme (LSHB-CT-2003-503231), the Hochschulbauförderungsgesetz Program (HBFG-122-605), the Forschungszentrum Immunologie at the University of Mainz, the Nuffield Dominions Trust, Cancer Research UK, the European Union (LSHG-CT-2006-031220, LSHC-CT-2006-518234 and HEALTH-2007-222773), the Wellcome Trust, The James Martin 21st Century School at the University of Oxford, the National Institute for Health Research Biomedical Research Centre Programme, and the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

A.K.N.I. conceived and designed the overall study and wrote the manuscript; S.T., H.S., S.B., P.v.E. and A.K.N.I. planned and supervised experiments; S.T., E.W., A.B., G.S.-J., L.F., K.L., C.-h.C., M.H., M.W., N.A. and A.K.N.I. did experiments; S.T., H.S., S.B., G.S.-J., E.Y.J., P.K., P.v.E. and A.K.N.I. analyzed data; J.G. and A.K.N.I. provided patient samples; S.B., P.v.E., A.J.M., L.F., A.K.N.I. and H.S. provided reagents; and S.T., S.B., H.S., P.K., L.F., G.S.-J., E.Y.J. and P.v.E. contributed intellectual input.

Corresponding author

Correspondence to Astrid K N Iversen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 5449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, S., Wee, E., Burgevin, A. et al. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 10, 636–646 (2009). https://doi.org/10.1038/ni.1728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing