Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88–independent TLR4 pathway

Abstract

Toll-like receptor 4 (TLR4) signals the induction of transcription factor IRF3–dependent genes from the early endosome via the adaptor TRAM. Here we report a splice variant of TRAM, TAG ('TRAM adaptor with GOLD domain'), which has a Golgi dynamics domain coupled to TRAM's Toll–interleukin 1 receptor domain. After stimulation with lipopolysaccharide, TRAM and TAG localized to late endosomes positive for the GTPase Rab7a. TAG inhibited activation of IRF3 by lipopolysaccharide. Knockdown of TAG with small interfering RNA enhanced induction of the chemokine CCL5 (RANTES), but not of interleukin 8, by lipopolysaccharide in human peripheral blood mononuclear cells. TAG displaced the adaptor TRIF from TRAM. TAG is therefore an example of a specific inhibitor of the adaptor MyD88–independent pathway activated by TLR4. Targeting TAG could be useful in the effort to boost the immunostimulatory effect of TLR4 without causing unwanted inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRAM and TAG are generated by alternative splicing.
Figure 2: Expression and localization of TAG and TRAM.
Figure 3: Live-cell imaging of the cellular localization of TRAM and TAG.
Figure 4: Overexpression of TAG inhibits TLR4 signaling pathways.
Figure 5: Negative regulatory function of TAG in LPS signaling.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Palsson-McDermott, E.M. & O'Neill, L.A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113, 153–162 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, M. et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Barrat, F.J. & Coffman, R.L. Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol. Rev. 223, 271–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Fitzgerald, K.A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kagan, J.C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Fitzgerald, K.A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Rowe, D.C. et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc. Natl. Acad. Sci. USA 103, 6299–6304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by TRIF-dependent and TRIF-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kagan, J.C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Husebye, H. et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 25, 683–692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anantharaman, V. & Aravind, L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol. 3, research0023.1–research0023.7 (2002).

    Google Scholar 

  16. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y. et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 110, 962–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. McGettrick, A.F. et al. TRIF-related adapter molecule is phosphorylated by PKC{epsilon} during Toll-like receptor 4 signaling. Proc. Natl. Acad. Sci. USA 103, 9196–9201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dominguez, M. et al. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J. Cell Biol. 140, 751–765 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Janssens, S., Burns, K., Tschopp, J. & Beyaert, R. Regulation of interleukin-1- and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr. Biol. 12, 467–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Keating, S.E., Maloney, G.M., Moran, E.M. & Bowie, A.G. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFκB via activation of TRAF6 ubiquitination. J. Biol. Chem. 282, 33435–33443 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Hardy, M.P. & O'Neill, L.A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem. 279, 27699–27708 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Latz, E. et al. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2–CD14 complex in a process that is distinct from the initiation of signal transduction. J. Biol. Chem. 277, 47834–47843 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Brinkmann, M.M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ewald, S.E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9, 1407–1414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Núñez Miguel, R.W.J., Westoll, J.F., Brooks, H.J., O'Neill, L.A., Gay, N.J., Bryant, C.E. & Monie, T.P. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE. 2, e788 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  PubMed  Google Scholar 

  30. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R. & Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229–237 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Fitzgerald (University of Massachusetts) for TRAM-GFP and TRAM-CFP; M. Zerial (Max Planck Institute of Molecular Cell Biology and Genetics) for Rab7a-CFP and Rab7a-GFP; H. Stanmark (The Norweigen Radium Hospital) for EEA1-GFP; C. Basler (Mount Sinai School of Medicine) for hemagglutinin-tagged-TRIF; R.Y. Tsien (University of California Davis) for pRSET-B-mCherry; and E. Latz (University of Massachusetts) and E. Samstad (University of Massachusetts) for mCherry-tagged TLR4-HEK293 cells. M.H. and H.H. contributed equally to this work. Supported by the Health Research Board Ireland and Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Contributions

E.M.P.-M. did the experiments in Figures 3g, 4d,e and 5a,b,d,e; S.L.D. did the experiments in Figures 2, 3, 4a–c and 5c; A.F.M. cloned TAG and did 5′ and 3′ RACE and initial transfection, siRNA and confocal experiments; M.H. found TAG by genomic analysis; K.B. provided technical assistance; H.H. and T.E. helped with the confocal experiments; M.G. and D.G. made the immortalized TRAM-deficient bone marrow–derived macrophages; and L.A.J.O. directed the program and wrote the manuscript with E.M.P.-M., S.L.D. and A.F.M.

Corresponding author

Correspondence to Luke A J O'Neill.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palsson-McDermott, E., Doyle, S., McGettrick, A. et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88–independent TLR4 pathway. Nat Immunol 10, 579–586 (2009). https://doi.org/10.1038/ni.1727

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing