Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation

Abstract

The cytidine deaminase AID (encoded by Aicda in mice and AICDA in humans) is critical for immunoglobulin class-switch recombination (CSR) and somatic hypermutation (SHM). Here we show that AID expression was induced by the HoxC4 homeodomain transcription factor, which bound to a highly conserved HoxC4-Oct site in the Aicda or AICDA promoter. This site functioned in synergy with a conserved binding site for the transcription factors Sp1, Sp3 and NF-κB. HoxC4 was 'preferentially' expressed in germinal center B cells and was upregulated by engagement of CD40 by CD154, as well as by lipopolysaccharide and interleukin 4. HoxC4 deficiency resulted in impaired CSR and SHM because of lower AID expression and not some other putative HoxC4-dependent activity. Enforced expression of AID in Hoxc4−/− B cells fully restored CSR. Thus, HoxC4 directly activates the Aicda promoter, thereby inducing AID expression, CSR and SHM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hoxc4 expression correlates with Aicda expression.
Figure 2: Impaired antibody response in Hoxc4−/− mice.
Figure 3: HoxC4 deficiency does not affect B cell, T cell or CD4+ T cell numbers, death of B cells and T cells in spleens and Peyer's patches or B cell cycle or division or alter germinal center formation and in vivo B cell proliferation.
Figure 4: Impaired CSR in Hoxc4−/− B cells.
Figure 5: HoxC4 deficiency does not alter germline IH-CH transcripts but results in lower expression of post-recombination Iμ-CH transcripts.
Figure 6: Somatic mutation in the immunoglobulin heavy-chain intronic JH4-iEμ DNA of Peyer's patch PNAhiB220+ (germinal center) B cells.
Figure 7: HoxC4 deficiency impairs AID expression, which depends on the conserved HoxC4-Oct–binding site in the Aicda promoter.
Figure 8: The conserved HoxC4-Oct– and Sp–NF-κB–binding sites are essential for full Aicda promoter activity, and HoxC4, Oct1, Oct2, Oca-B, Pax5, Sp1, Sp3 and NF-κB (p52) are recruited to the Aicda promoter in B cells expressing AICDA or Aicda and undergoing CSR or SHM.
Figure 9: Enforced expression of AID restores CSR in Hoxc4−/− B cells.

Similar content being viewed by others

References

  1. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Honjo, T., Muramatsu, M. & Fagarasan, S. Aid: How does it aid antibody diversity? Immunity 20, 659–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Neuberger, M.S., Harris, R.S., Di Noia, J. & Petersen-Mahrt, S.K. Immunity through DNA deamination. Trends Biochem. Sci. 28, 305–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhuri, J. & Alt, F.W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rada, C., Di Noia, J.M. & Neuberger, M.S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Maizels, N. Immunoglobulin gene diversification. Annu. Rev. Genet. 39, 23–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Di Noia, J.M. & Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Peled, J.U. et al. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26, 481–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Diaz, M. & Casali, P. Somatic immunoglobulin hypermutation. Curr. Opin. Immunol. 14, 235–240 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes; merging mechanisms for genetic diversity. Cell 109, s35–s44 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, X. et al. Immunoglobulin somatic hypermutation: double-strand DNA breaks, AID and error-prone DNA repair. J. Clin. Immunol. 23, 235–246 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu, Z. et al. DNA lesions and repair in immunoglobulin class switch recombination and somatic hypermutation. Ann. NY Acad. Sci. 1050, 146–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Casali, P., Pal, Z., Xu, Z. & Zan, H. DNA repair in antibody somatic hypermutation. Trends Immunol. 27, 313–321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan, C.T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Sayegh, C.E., Quong, M.W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4, 586–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Gonda, H. et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198, 1427–1437 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yadav, A. et al. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol. Immunol. 43, 529–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pearson, J.C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 839–904 (2005).

    Google Scholar 

  19. Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Deschamps, J. & van Nes, J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132, 2931–2942 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lemons, D. & McGinnis, W. Genomic evolution of Hox gene clusters. Science 313, 1918–1922 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bijl, J. et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 87, 1737–1745 (1996).

    CAS  PubMed  Google Scholar 

  23. Meazza, R. et al. Expression of HOXC4 homeoprotein in the nucleus of activated human lymphocytes. Blood 85, 2084–2090 (1995).

    CAS  PubMed  Google Scholar 

  24. Schaffer, A. et al. Selective inhibition of class switching to IgG and IgE by recruitment of the HoxC4 and Oct-1 homeodomain proteins and Ku70/Ku86 to newly identified ATTT cis-elements. J. Biol. Chem. 278, 23141–23150 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, E.C., Edmonston, C.R., Wu, X., Schaffer, A. & Casali, P. The HoxC4 homeodomain protein mediates activation of the immunoglobulin heavy chain 3′ hs1,2 enhancer in human B cells. Relevance to class switch DNA recombination. J. Biol. Chem. 279, 42258–42269 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood 104, 3318–3325 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Guikema, J.E. et al. Quantitative RT-PCR analysis of activation-induced cytidine deaminase expression in tissue samples from mantle cell lymphoma and B-cell chronic lymphocytic leukemia patients. Blood 105, 2997–2998 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Bijl, J.J. et al. HOXC4, HOXC5, and HOXC6 expression in non-Hodgkin's lymphoma: preferential expression of the HOXC5 gene in primary cutaneous anaplastic T-cell and oro-gastrointestinal tract mucosa-associated B-cell lymphomas. Blood 90, 4116–4125 (1997).

    CAS  PubMed  Google Scholar 

  29. Boulet, A.M. & Capecchi, M.R. Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev. Biol. 177, 232–249 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Saegusa, H., Takahashi, N., Noguchi, S. & Suemori, H. Targeted disruption in the mouse Hoxc-4 locus results in axial skeleton homeosis and malformation of the xiphoid process. Dev. Biol. 174, 55–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, Z. et al. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit. Rev. Immunol. 27, 367–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crouch, E.E. et al. Regulation of AID expression in the immune response. J. Exp. Med. 204, 1145–1156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Schaffer, A., Cerutti, A., Shah, S., Zan, H. & Casali, P. The evolutionary conserved sequence upstream of the human Ig Sγ3 region is an inducible promoter: Synergistic activation by CD40 ligand and IL-4 via cooperative NF-κB and STAT-6 binding sites. J. Immunol. 162, 5327–5336 (1999).

    CAS  PubMed  Google Scholar 

  36. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, C., Zhao, M.L. & Diaz, M. Activation-induced deaminase heterozygous MRL/lpr mice are delayed in the production of high-affinity pathogenic antibodies and in the development of lupus nephritis. Immunology 126, 102–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takizawa, M. et al. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J. Exp. Med. 205, 1949–1957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saville, B. et al. Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J. Biol. Chem. 275, 5379–5387 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Schoetz, U., Cervelli, M., Wang, Y.-D., Fiedler, P. & Buerstedde, J.-M. E2A expression stimulates Ig hypermutation. J. Immunol. 177, 395–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Odegard, V.H., Kim, S.T., Anderson, S.M., Shlomchik, M.J. & Schatz, D.G. Histone modifications associated with somatic hypermutation. Immunity 23, 101–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Teitell, M.A. OCA-B regulation of B-cell development and function. Trends Immunol. 24, 546–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Sale, J.E. & Neuberger, M.S. TdT-accessibe breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Cerutti, A. et al. CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+IgD+ B cell line. J. Immunol. 160, 2145–2157 (1998).

    CAS  PubMed  Google Scholar 

  46. Zan, H. et al. Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ cell line in vitro: Definition of the requirements and the modalities of hypermutation. J. Immunol. 162, 3437–3447 (1999).

    CAS  PubMed  Google Scholar 

  47. Zan, H., Cerutti, A., Schaffer, A., Dramitinos, P. & Casali, P. CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF-β. Evidence for TGF-β but not IL-10-dependent direct Sμ → Sα and sequential Sμ → Sγ, Sγ → Sα DNA recombination. J. Immunol. 161, 5217–5225 (1998).

    CAS  PubMed  Google Scholar 

  48. Zan, H. et al. The translesion DNA polymerase ζ plays a major role in Ig and Bcl-6 somatic hypermutation. Immunity 14, 643–653 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zan, H. et al. BCR engagement and T cell contact induce Bcl-6 hypermutation in human B cells: association with initiation of transcription and identity with immunoglobulin hypermutation. J. Immunol. 165, 830–839 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Zan, H., Wu, X., Komori, A., Holloman, W.K. & Casali, P. AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. Immunity 18, 727–738 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zan, H. & Casali, P. AID- and Ung-dependent generation of staggered double-strand DNA breaks in immunoglobulin class switch DNA recombination: A post-cleavage role for AID. Mol. Immunol. 46, 45–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Rush, J.S., Liu, M., Odegard, V.H., Unniraman, S. & Schatz, D.G. Expression of activation-induced cytidine deaminase is regulated by cell division, providing a mechanistic basis for division-linked class switch recombination. Proc. Natl. Acad. Sci. USA 102, 13242–13247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zan, H. et al. Lupus-prone MRL/faslpr/lpr mice display increased AID expression and extensive DNA lesions, comprising deletions and insertions, in the immunoglobulin locus: Concurrent upregulation of somatic hypermutation and class switch DNA recombination. Autoimmunity 42, 89–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zan, H. et al. The translesion DNA polymerase θ plays a major role in immunoglobulin gene somatic hypermutation. EMBO J. 24, 3757–3769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.R. Capecchi and A.M. Boulet (University of Utah) for Hoxc4+/− frozen mouse sperm; T. Fielder for technical efforts; L. Khidr, L. Phan, B. Gupta, J. Feng and Y. Zhong for handling Hoxc4+/− mice; C. Murre (University of California, San Diego) for the Aicda retroviral construct, T. Honjo (Kyoto University) for CH12F3-2A cells; C.M. Snapper (Uniformed Services University of the Health Sciences) for dextran-conjugated mAb to δ-chain; Z. Yu for statistic analysis; A. Schaffer for discussions; and S. Sabet and M. Kang for technical assistance. Supported by the US National Institutes of Health (AI 045011, AI 079705 and AI 060573 to P.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.-R.P., H.Z., Z.P., J.Z., A.A.-Q., E.J.P., Z.X. and T.M. did experiments; H.Z. designed experiments, analyzed data and prepared the manuscript; and P.C. designed all experiments, analyzed the data, supervised the work and prepared the manuscript.

Corresponding author

Correspondence to Paolo Casali.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Tables 1 and Supplementary Methods (PDF 4601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SR., Zan, H., Pal, Z. et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat Immunol 10, 540–550 (2009). https://doi.org/10.1038/ni.1725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing