Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids

Abstract

Immature B cells developing in the bone marrow are found in the parenchyma and sinusoids. The mechanisms that control the positioning of B cells in the sinusoids are not understood. Here we show that the integrin α4β1 (VLA-4) and its ligand VCAM-1 were required, whereas the chemokine receptor CXCR4 was dispensable, for sinusoidal retention of B cells. Instead, cannabinoid receptor 2 (CB2), a Gαi protein–coupled receptor upregulated in immature B cells, was required for sinusoidal retention. Using two-photon microscopy, we found immature B cells entering and crawling in sinusoids; these immature B cells were displaced by CB2 antagonism. Moreover, CB2-deficient mice had a lower frequency of immunoglobulin λ-chain–positive B cells in the peripheral blood and spleen. Our findings identify unique requirements for the retention of B cells in the bone marrow sinusoidal niche and suggest involvement of CB2 in the generation of the B cell repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo labeling of B lymphocytes in bone marrow sinusoids.
Figure 2: Retention of B cells in bone marrow sinusoids is promoted by α4 and VCAM-1.
Figure 3: Retention of B lymphocytes in bone marrow sinusoids by β1 integrins.
Figure 4: CXCR4 contributes to the retention of B lineage cells in bone marrow parenchyma but does not account for sinusoidal retention.
Figure 5: CB2 is required for the lodgment of immature B cells in bone marrow sinusoids.
Figure 6: Migration dynamics of immature B cells in bone marrow sinusoids.
Figure 7: Constitutive requirement for CB2 in the retention of B cells in bone marrow sinusoids.
Figure 8: Lower frequency of λ+ B cells in CB2-deficient mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Batten, S.J. & Osmond, D.G. The localization of B lymphocytes in mouse bone marrow: radioautographic studies after in vivo perfusion of radiolabelled anti-IgM antibody. J. Immunol. Methods 72, 381–399 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Osmond, D.G. & Batten, S.J. Genesis of B lymphocytes in the bone marrow: extravascular and intravascular localization of surface IgM-bearing cells in mouse bone marrow detected by electron-microscope radioautography after in vivo perfusion of 125I anti-IgM antibody. Am. J. Anat. 170, 349–365 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Hermans, M.H., Hartsuiker, H. & Opstelten, D. An in situ study of B-lymphocytopoiesis in rat bone marrow. Topographical arrangement of terminal deoxynucleotidyl transferase-positive cells and pre-B cells. J. Immunol. 142, 67–73 (1989).

    CAS  PubMed  Google Scholar 

  4. Jacobsen, K. & Osmond, D.G. Microenvironmental organization and stromal cell associations of B lymphocyte precursor cells in mouse bone marrow. Eur. J. Immunol. 20, 2395–2404 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Tavassoli, M. & Yoffey, J.M. Bone Marrow Structure and Function. 1–300 (Alan R Liss, New York, 1983).

  6. Yoffey, J.M., Hudson, G. & Osmond, D.G. The lymphocyte in guinea-pig bone marrow. J. Anat. 99, 841–860 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobsen, K., Kravitz, J., Kincade, P.W. & Osmond, D.G. Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and γ-irradiated mice. Blood 87, 73–82 (1996).

    CAS  PubMed  Google Scholar 

  8. Mazo, I.B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papayannopoulou, T. & Scadden, D.T. Stem-cell ecology and stem cells in motion. Blood 111, 3923–3930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brakebusch, C. et al. Beta1 integrin is not essential for hematopoiesis but is necessary for the T cell-dependent IgM antibody response. Immunity 16, 465–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Potocnik, A.J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Scott, L.M., Priestley, G.V. & Papayannopoulou, T. Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol. Cell. Biol. 23, 9349–9360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bungartz, G. et al. Adult murine hematopoiesis can proceed without β1 and β7 integrins. Blood 108, 1857–1864 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Koni, P.A. et al. Conditional vascular cell adhesion molecule 1 deletion in mice. Impaired lymphocyte migration to bone marrow. J. Exp. Med. 193, 741–754 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leuker, C.E., Labow, M., Muller, W. & Wagner, N. Neonatally induced inactivation of the vascular cell adhesion molecule 1 gene impairs B cell localization and T cell-dependent humoral immune response. J. Exp. Med. 193, 755–768 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glodek, A.M., Honczarenko, M., Le, Y., Campbell, J.J. & Silberstein, L.E. Sustained activation of cell adhesion is a differentially regulated process in B lymphopoiesis. J. Exp. Med. 197, 461–473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat. Immunol. 6, 1038–1046 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Sipkins, D.A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Egawa, T. et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15, 323–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Nie, Y. et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J. Exp. Med. 200, 1145–1156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hargreaves, D.C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mazo, I.B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. D'Apuzzo, M. et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur. J. Immunol. 27, 1788–1793 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Fedyk, E.R., Ryyan, D.H., Ritterman, I. & Springer, T.A. Maturation decreases responsiveness of human bone marrow B lineage cells to stromal-derived factor 1 (SDF-1). J. Leukoc. Biol. 66, 667–673 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Honczarenko, M. et al. SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood 94, 2990–2998 (1999).

    CAS  PubMed  Google Scholar 

  27. Galiegue, S. et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Sugiura, T., Kishimoto, S., Oka, S. & Gokoh, M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog. Lipid Res. 45, 405–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Tam, J. et al. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J. 22, 285–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5, 400–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Tamamura, H. et al. Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg. Med. Chem. Lett. 11, 1897–1902 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Hoffmann, R., Seidl, T., Neeb, M., Rolink, A. & Melchers, F. Changes in gene expression profiles in developing B cells of murine bone marrow. Genome Res. 12, 98–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuwata, N., Igarashi, H., Ohmura, T., Aizawa, S. & Sakaguchi, N. Cutting edge: absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J. Immunol. 163, 6355–6359 (1999).

    CAS  PubMed  Google Scholar 

  37. Rinaldi-Carmona, M. et al. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 284, 644–650 (1998).

    CAS  PubMed  Google Scholar 

  38. Jorda, M.A. et al. Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol. Blood 99, 2786–2793 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Tanikawa, T., Kurohane, K. & Imai, Y. Induction of preferential chemotaxis of unstimulated B-lymphocytes by 2-arachidonoylglycerol in immunized mice. Microbiol. Immunol. 51, 1013–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Ziring, D. et al. Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 58, 714–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8, 1076–1085 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Oberdoerffer, P., Novobrantseva, T.I. & Rajewsky, K. Expression of a targeted λ1 light chain gene is developmentally regulated and independent of Ig κ rearrangements. J. Exp. Med. 197, 1165–1172 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vela, J.L., Ait-Azzouzene, D., Duong, B.H., Ota, T. & Nemazee, D. Rearrangement of mouse immunoglobulin κ deleting element recombining sequence promotes immune tolerance and λ B cell production. Immunity 28, 161–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kaminski, N.E., Koh, W.S., Yang, K.H., Lee, M. & Kessler, F.K. Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G-protein coupled mechanism. Biochem. Pharmacol. 48, 1899–1908 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Schatz, A.R., Koh, W.S. & Kaminski, N.E. Delta 9-tetrahydrocannabinol selectively inhibits T-cell dependent humoral immune responses through direct inhibition of accessory T-cell function. Immunopharmacology 26, 129–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Cariappa, A. et al. Perisinusoidal B cells in the bone marrow participate in T-independent responses to blood-borne microbes. Immunity 23, 397–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Estalilla, O.C., Koo, C.H., Brynes, R.K. & Medeiros, L.J. Intravascular large B-cell lymphoma. A report of five cases initially diagnosed by bone marrow biopsy. Am. J. Clin. Pathol. 112, 248–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Sakaguchi (Kumamoto University) for Rag1GFP/GFP mice; T. Gerdes and M. Wabl (University of California San Francisco) for Rag1GFP/+ mice; H. Tamamura and N. Fujii (Kyoto University) for the CXCR4 antagonist; Y.-R. Zhou (Columbia University) and D. Littman (New York University) for CXCR4-deficient mice; K. Rajewsky (CBR Institute, Harvard Medical School) for Cd19Cre/+ mice; C. Allen for technical help and discussions; L. Shiow for discussions; I. Grigorova for technical help and discussions; and S. Vilarinho, T. Arnon, E. Gray and S.R. Schwab for comments on the manuscript. Supported by the Howard Hughes Medical Institute (J.P.P. and J.G.C.) and the National Institutes of Health (AI40098).

Author information

Authors and Affiliations

Authors

Contributions

J.P.P. did the experiments; J.A. maintained the mouse colonies; Y.X. did the quantitative PCR analysis; Y.H. did the mass spectrometry analysis; and J.P.P. and J.G.C. designed and conceptualized the research, analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to Jason G Cyster.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 685 kb)

Supplementary Video 1

Immature B cells enter and crawl inside BM sinusoids. Timelapse sequence of 51μm z-projection images of the BM calvarium of an anesthetized adult Rag1GFP/+ mouse. A cell in parenchyma and a cell inside a sinusoid and their migratory paths were highlighted with a flashing white arrowhead, and with white dots, respectively. The flashing yellow arrowhead and yellow dots draw attention to a cell in the parenchyma entering and crawling inside a sinusoid. Elapsed time is shown in mm:ss. (MOV 6084 kb)

Supplementary Video 2

Immature B cell arrest and crawling inside BM sinusoids. Timelapse sequence of 51μm z-projection images of the BM calvarium of an anesthetized adult Rag1GFP/+ mouse. Two cells inside sinusoids are highlighted with flashing yellow arrowheads moments before being released and disappearing in flow. The white arrowhead indicates the region where a cell arrests and begins crawling inside the sinsuoid. The white dots depict the migratory path of the cell. Elapsed time is shown in mm:ss. (MOV 8807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, J., An, J., Xu, Y. et al. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 10, 403–411 (2009). https://doi.org/10.1038/ni.1710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing