Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells

Abstract

Interleukin 7 (IL-7) and T cell antigen receptor signals have been proposed to be the main drivers of homeostatic T cell proliferation. However, it is not known why CD4+ T cells undergo less-efficient homeostatic proliferation than CD8+ T cells do. Here we show that systemic IL-7 concentrations increased during lymphopenia because of diminished use of IL-7 but that IL-7 signaling on IL-7 receptor-α–positive (IL-7Rα+) dendritic cells (DCs) in lymphopenic settings paradoxically diminished the homeostatic proliferation of CD4+ T cells. This effect was mediated at least in part by IL-7-mediated downregulation of the expression of major histocompatibility complex class II on IL-7Rα+ DCs. Our results indicate that IL-7Rα+ DCs are regulators of the peripheral CD4+ T cell niche and that IL-7 signals in DCs prevent uncontrolled CD4+ T cell population expansion in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-7Rα signaling regulates stromal IL-7 production in vivo.
Figure 2: High systemic concentrations of IL-7 'preferentially' expand CD8+ but not CD4+ T cell populations.
Figure 3: Bone marrow–derived IL-7 supports the homeostatic proliferation of CD4+ T cells in lymphopenic hosts, whereas stromal cell-derived IL-7 inhibits this proliferation.
Figure 4: IL-7 signaling on bone marrow–derived cells inhibits the homeostatic proliferation of CD4+ T cells during lymphopenia.
Figure 5: IL-7 signaling diminishes the expression of MHC class II on APCs during lymphopenia.
Figure 6: Stromal cell–derived IL-7 regulates DC IL-7 production in the lymphoid microenvironment.
Figure 7: IL-7 acts directly on CD4+ T cells.

Similar content being viewed by others

References

  1. Mackall, C.L. et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332, 143–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Heitger, A. et al. Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood 90, 850–857 (1997).

    CAS  PubMed  Google Scholar 

  3. Dumont-Girard, F. et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 92, 4464–4471 (1998).

    CAS  PubMed  Google Scholar 

  4. Hakim, F.T. et al. Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90, 3789–3798 (1997).

    CAS  PubMed  Google Scholar 

  5. Douek, D.C. et al. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J. Immunol. 167, 6663–6668 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hakim, F.T. et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest. 115, 930–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Surh, C.D. & Sprent, J. Homeostatic T cell proliferation: how far can T cells be activated to self-ligands? J. Exp. Med. 192, F9–F14 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Seddon, B. & Zamoyska, R. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J. Immunol. 169, 2997–3005 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Vivien, L., Benoist, C. & Mathis, D. T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int. Immunol. 13, 763–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Mackall, C.L. et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97, 1491–1497 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Fry, T.J. et al. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101, 2294–2299 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Sportes, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. (in the press) (2008).

  15. Geiselhart, L.A. et al. IL-7 administration alters the CD4:CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J. Immunol. 166, 3019–3027 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Napolitano, L.A. et al. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat. Med. 7, 73–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Fry, T.J. et al. A potential role for interleukin-7 in T-cell homeostasis. Blood 97, 2983–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bolotin, E., Annett, G., Parkman, R. & Weinberg, K. Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant. 23, 783–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Muthukumar, A. et al. Elevated interleukin-7 levels not sufficient to maintain T-cell homeostasis during simian immunodeficiency virus-induced disease progression. Blood 103, 973–979 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Park, J.H. et al. Suppression of IL7Rα transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Iwata, M., Graf, L., Awaya, N. & Torok-Storb, B. Functional interleukin-7 receptors (IL-7Rs) are expressed by marrow stromal cells: binding of IL-7 increases levels of IL-6 mRNA and secreted protein. Blood 100, 1318–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Pillai, M., Torok-Storb, B. & Iwata, M. Expression and function of IL-7 receptors in marrow stromal cells. Leuk. Lymphoma 45, 2403–2408 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Min, B., Foucras, G., Meier-Schellersheim, M. & Paul, W.E. Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc. Natl. Acad. Sci. USA 101, 3874–3879 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kieper, W.C. et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol. 174, 3158–3163 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Kassiotis, G., Zamoyska, R. & Stockinger, B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J. Exp. Med. 197, 1007–1016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bourgeois, C., Kassiotis, G. & Stockinger, B. A major role for memory CD4 T cells in the control of lymphopenia-induced proliferation of naive CD4 T cells. J. Immunol. 174, 5316–5323 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Melchionda, F. et al. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest. 115, 1177–1187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeda, S., Rodewald, H.R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Boursalian, T.E. & Bottomly, K. Survival of naive CD4 T cells: roles of restricting versus selecting MHC class II and cytokine milieu. J. Immunol. 162, 3795–3801 (1999).

    CAS  PubMed  Google Scholar 

  31. Kieper, W.C., Burghardt, J.T. & Surh, C.D. A role for TCR affinity in regulating naive T cell homeostasis. J. Immunol. 172, 40–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Labrecque, N. et al. How much TCR does a T cell need? Immunity 15, 71–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Fry, T.J. et al. Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 104, 2794–2800 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moniuszko, M. et al. Recombinant interleukin-7 induces proliferation of naive macaque CD4+ and CD8+ T cells in vivo. J. Virol. 78, 9740–9749 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Saint-Vis, B. et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160, 1666–1676 (1998).

    CAS  PubMed  Google Scholar 

  37. Sorg, R.V., McLellan, A.D., Hock, B.D., Fearnley, D.B. & Hart, D.N. Human dendritic cells express functional interleukin-7. Immunobiology 198, 514–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Harnaha, J. et al. Interleukin-7 is a survival factor for CD4+ CD25+ T-cells and is expressed by diabetes-suppressive dendritic cells. Diabetes 55, 158–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Mackall, C.L. et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89, 3700–3707 (1997).

    CAS  PubMed  Google Scholar 

  40. Dion, M.L. et al. Slow disease progression and robust therapy-mediated CD4+ T-cell recovery are associated with efficient thymopoiesis during HIV-1 infection. Blood 109, 2912–2920 (2007).

    CAS  PubMed  Google Scholar 

  41. Yao, Y. et al. ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages. J. Immunol. 177, 70–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Crawley, J.B. et al. T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase activation. J. Biol. Chem. 272, 15023–15027 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Moschella, F. et al. Transcript profiling of human dendritic cells maturation-induced under defined culture conditions: comparison of the effects of tumour necrosis factor alpha, soluble CD40 ligand trimer and interferon gamma. Br. J. Haematol. 114, 444–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Vasir, B. et al. Dendritic cells induce MUC1 expression and polarization on human T cells by an IL-7-dependent mechanism. J. Immunol. 174, 2376–2386 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Fluur, C. et al. Potential role for IL-7 in Fas-mediated T cell apoptosis during HIV infection. J. Immunol. 178, 5340–5350 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Killian, M.S., Fujimura, S.H., Hecht, F.M. & Levy, J.A. Similar changes in plasmacytoid dendritic cell and CD4 T-cell counts during primary HIV-1 infection and treatment. AIDS 20, 1247–1252 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Giraud, S. et al. Plasmacytoid dendritic cell reconstitution following bone marrow transplantation: subnormal recovery and functional deficit of IFN-α/β production in response to herpes simplex virus. J. Interferon Cytokine Res. 25, 135–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Mohty, M. et al. Impact of plasmacytoid dendritic cells on outcome after reduced-intensity conditioning allogeneic stem cell transplantation. Leukemia 19, 1–6 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Kapoor and N. Voong for flow cytometry expertise; M.A. Caligiuri (Ohio State University) for Flt3 ligand; S. Durum (National Cancer Institute) for Rag1−/−Il7−/− mice; and S. Durum, A. Singer and R. Gress for review of the manuscript. Supported by the Intramural Program of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.G. did most of the experiments, contributed to experimental design and wrote the manuscript; R.G.V., D.J.G. and R.D.M. did experiments; H.Z. did experiments and provided intellectual input; Y.C. did experiments, generated Stat5a−/−Stat5b−/− mice and provided intellectual and technical input; S.Y.K. provided technical support for immunofluorescence studies; R.N. bred and genotyped Stat5a+/−Stat5b+/− mice and provided fetal livers; L.H. provided Stat5a+/−Stat5b+/− mice and intellectual input; P.M. provided intellectual input and transgenic mice; B.E. provided intellectual input and generated and provided GFP–IL-7Rα mice; M.S.M. did experiments and provided intellectual input; and C.L.M. provided intellectual input and research support and contributed to writing the manuscript.

Corresponding author

Correspondence to Crystal L Mackall.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimond, M., Veenstra, R., Grindler, D. et al. Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10, 149–157 (2009). https://doi.org/10.1038/ni.1695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing