Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor

Abstract

Foxo transcription factors have a conserved role in the adaptation of cells and organisms to nutrient and growth factor availability. Here we show that Foxo1 has a crucial, nonredundant role in T cells. In naive T cells, Foxo1 controlled the expression of the adhesion molecule L-selectin, the chemokine receptor CCR7 and the transcription factor Klf2, and its deletion was sufficient to alter lymphocyte trafficking. Furthermore, Foxo1 deficiency resulted in a severe defect in interleukin 7 receptor α-chain (IL-7Rα) expression associated with its ability to bind an Il7r enhancer. Finally, growth factor withdrawal induced a Foxo1-dependent increase in Sell, Klf2 and Il7r expression. These data suggest that Foxo1 regulates the homeostasis and life span of naive T cells by sensing growth factor availability and regulating homing and survival signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxo1 is preferentially expressed in lymphoid cells.
Figure 2: Foxo1 is required for maintenance of T cell homeostasis.
Figure 3: Foxo1 is dispensable for T cell development.
Figure 4: Foxo1 regulates L-selectin, CCR7 and Klf2 expression and T cell homing in vivo.
Figure 5: Foxo1 is required for naive T cell survival.
Figure 6: Foxo1 is required for IL-7Rα expression in naive T cells and binds to an Il7r enhancer.
Figure 7: Foxo1-mediated control of Il-7Rα and trafficking receptors after cell starvation.

Similar content being viewed by others

References

  1. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Almeida, A.R., Rocha, B., Freitas, A.A. & Tanchot, C. Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Semin. Immunol. 17, 239–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Greer, E.L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. van der Vos, K.E. & Coffer, P.J. FOXO-binding partners: it takes two to tango. Oncogene 27, 2289–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Calnan, D.R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Peng, S.L. Foxo in the immune system. Oncogene 27, 2337–2344 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Charvet, C. et al. Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression. J. Immunol. 177, 5024–5031 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Stahl, M. et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J. Immunol. 168, 5024–5031 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Barata, J.T. et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J. Exp. Med. 200, 659–669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dijkers, P.F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol. 20, 9138–9148 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabre, S. et al. Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J. Immunol. 174, 4161–4171 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. You, H. et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203, 1657–1663 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dijkers, P.F., Medema, R.H., Lammers, J.W., Koenderman, L. & Coffer, P.J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Gac, L., Marques, M., Garcia, Z., Campanero, M.R. & Carrera, A.C. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol. Cell. Biol. 24, 2181–2189 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kops, G.J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell. Biol. 22, 2025–2036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Castrillon, D.H., Miao, L., Kollipara, R., Horner, J.W. & DePinho, R.A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Amin, R.H. & Schlissel, M.S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herzog, S. et al. SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat. Immunol. 9, 623–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Dengler, H.S. et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9, 1388–1398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furuyama, T. et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279, 34741–34749 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Leenders, H., Whiffield, S., Benoist, C. & Mathis, D. Role of the forkhead transcription family member, FKHR, in thymocyte differentiation. Eur. J. Immunol. 30, 2980–2990 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Vivien, L., Benoist, C. & Mathis, D. T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int. Immunol. 13, 763–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Guo, K. et al. Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology 148, 3987–3997 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Carlson, C.M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Arbones, M.L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Cyster, J.G. & Goodnow, C.C. Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J. Exp. Med. 182, 581–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Sebzda, E., Zou, Z., Lee, J.S., Wang, T. & Kahn, M.L. Transcription factor KLF2 regulates the migration of naive T cells by restricting chemokine receptor expression patterns. Nat. Immunol. 9, 292–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Wojciechowski, S. et al. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. J. Exp. Med. 204, 1665–1675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jameson, S.C. T cell homeostasis: keeping useful T cells alive and live T cells useful. Semin. Immunol. 17, 231–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, S.K. & Surh, C.D. Role of interleukin-7 in bone and T-cell homeostasis. Immunol. Rev. 208, 169–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Xue, H.H. et al. GA binding protein regulates interleukin 7 receptor alpha-chain gene expression in T cells. Nat. Immunol. 5, 1036–1044 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Park, J.H. et al. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat. Immunol. 8, 1049–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Park, J.H. et al. Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Chao, C.C., Jensen, R. & Dailey, M.O. Mechanisms of L-selectin regulation by activated T cells. J. Immunol. 159, 1686–1694 (1997).

    CAS  PubMed  Google Scholar 

  43. Cinalli, R.M. et al. T cell homeostasis requires G protein-coupled receptor-mediated access to trophic signals that promote growth and inhibit chemotaxis. Eur. J. Immunol. 35, 786–795 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J.P. Gamma chain required for naive CD4+ T cell survival but not for antigen proliferation. Nat. Immunol. 1, 54–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Wallis, V.J., Leuchars, E., Chaudhuri, M. & Davies, A.J. Studies on hyperlymphoid mice. Immunology 38, 163–171 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Berzins, S.P., Boyd, R.L. & Miller, J.F. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Freitas, A.A. & Rocha, B. Peripheral T cell survival. Curr. Opin. Immunol. 11, 152–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Maeurer, M.J. & Lotze, M.T. Interleukin-7 (IL-7) knockout mice. Implications for lymphopoiesis and organ-specific immunity. Int. Rev. Immunol. 16, 309–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Birkenkamp, K.U. & Coffer, P.J. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J. Immunol. 171, 1623–1629 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Coffer, P.J. & Burgering, B.M. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Sinclair, L.V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat. Immunol. 9, 513–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Fabre, S. et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 181, 2980–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, H.C., Shibata, H., Ogawa, S., Maki, K. & Ikuta, K. Transcriptional regulation of the mouse IL-7 receptor alpha promoter by glucocorticoid receptor. J. Immunol. 174, 7800–7806 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Samaridis, J. et al. Development of lymphocytes in interleukin 7-transgenic mice. Eur. J. Immunol. 21, 453–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Mertsching, E., Burdet, C. & Ceredig, R. IL-7 transgenic mice: analysis of the role of IL-7 in the differentiation of thymocytes in vivo and in vitro. Int. Immunol. 7, 401–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Hataye, J., Moon, J.J., Khoruts, A., Reilly, C. & Jenkins, M.K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312, 114–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Pallard, C. et al. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10, 525–535 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Riou, C. et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med. 204, 79–91 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. D'Souza and M. McGargill for discussions and assistance with adoptive transfer experiments; T. Ludwig (Columbia University) for ERCre mice; C. Murre (University of California at San Diego) for PTENf/f-ERCre mice; H. Cheroutre (La Jolla Institute for Allergy and Immunology) for Il7r−/− mice; S. Kaech for identifying the evolutionarily conserved regions of Il7r; and A. Goldrath and P. Marrack for critical reading of the manuscript. Supported by funds made available by the University of California, San Diego Division of Biological Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Y.M.K. designed and conducted all of the experiments, in collaboration with D.R.B., R.T. and A.S.D. The breeding and initial characterization of the Foxo1; Cd4Cre mice were carried out by D.R.B. and R.T. Mice with a loxP-targeted Foxo1 locus were produced by D.H.C. and R.A.D. S.M.H. initiated the project with R.A.D. and supervised the experimentation. Y.M.K. and S.M.H. wrote the manuscript with contributions from the other authors.

Corresponding author

Correspondence to Stephen M Hedrick.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–3 (PDF 6981 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerdiles, Y., Beisner, D., Tinoco, R. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 10, 176–184 (2009). https://doi.org/10.1038/ni.1689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing