Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells

An Erratum to this article was published on 01 May 2009

This article has been updated

Abstract

Transcription factor Foxp3 is critical for generating regulatory T cells (Treg cells). Transforming growth factor-β (TGF-β) induces Foxp3 and suppressive Treg cells from naive T cells, whereas interleukin 6 (IL-6) inhibits the generation of inducible Treg cells. Here we show that IL-4 blocked the generation of TGF-β-induced Foxp3+ Treg cells and instead induced a population of T helper cells that produced IL-9 and IL-10. The IL-9+IL-10+ T cells demonstrated no regulatory properties despite producing abundant IL-10. Adoptive transfer of IL-9+IL-10+ T cells into recombination-activating gene 1–deficient mice induced colitis and peripheral neuritis, the severity of which was aggravated if the IL-9+IL-10+ T cells were transferred with CD45RBhi CD4+ effector T cells. Thus IL-9+IL-10+ T cells lack suppressive function and constitute a distinct population of helper-effector T cells that promote tissue inflammation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-4 inhibits TGF-β-induced Foxp3+ T cells.
Figure 2: The inhibition of Foxp3 induction by IL-4 is STAT6 dependent.
Figure 3: Relationship between and Foxp3 and GATA-3.
Figure 4: Function of the IL-9+IL-10+ Foxp3 T cells generated in presence of TGF-β and IL-4.

Similar content being viewed by others

Change history

  • 09 April 2009

    In the version of this article initially published, graph axes are mislabeled in Figures 1e, 2d and 2e, and a gene symbol is misidentified in the legend to Figure 2. The correct axis labels should be as follows: Figure 1e, middle right and far right vertical axes should end “(relative x 103)”; Figure 2d,e, left vertical axes should read “Il9 mRNA (relative x 102)”; Figure 2e, right vertical axis should read “Il10 mRNA (relative)”; and Figure 2e, horizontal axes should read “WT” (in place of “Foxp3-GFP”) and “GATA3-KO” (in place of “STAT6-KO.Fox3-GFP”). The legend for Figure 2d should state “relative to Hprt1 mRNA” and the legend to Figure 2e should have that phrase removed. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  2. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  Google Scholar 

  3. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  4. Ouyang, W., Kolls, J.K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  Google Scholar 

  5. Korn, T., Oukka, M., Kuchroo, V. & Bettelli, E. Th17 cells: effector T cells with inflammatory properties. Semin. Immunol. 19, 362–371 (2007).

    Article  CAS  Google Scholar 

  6. Battaglia, M., Gregori, S., Bacchetta, R. & Roncarolo, M.G. Tr1 cells: from discovery to their clinical application. Semin. Immunol. 18, 120–127 (2006).

    Article  CAS  Google Scholar 

  7. Hori, S., Takahashi, T. & Sakaguchi, S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv. Immunol. 81, 331–371 (2003).

    Article  CAS  Google Scholar 

  8. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  9. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    Article  CAS  Google Scholar 

  10. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  Google Scholar 

  11. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  Google Scholar 

  12. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  13. Wan, Y.Y. & Flavell, R.A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    Article  CAS  Google Scholar 

  14. Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 104, 18169–18174 (2007).

    Article  CAS  Google Scholar 

  15. Mantel, P.Y. et al. GATA3-driven Th2 responses inhibit TGF-β1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol. 5, e329 (2007).

    Article  Google Scholar 

  16. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    Article  CAS  Google Scholar 

  17. Stumhofer, J.S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    Article  CAS  Google Scholar 

  18. Ishida, H. et al. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J. Exp. Med. 179, 305–310 (1994).

    Article  CAS  Google Scholar 

  19. Llorente, L. et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J. Exp. Med. 181, 839–844 (1995).

    Article  CAS  Google Scholar 

  20. Van Snick, J. et al. Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J. Exp. Med. 169, 363–368 (1989).

    Article  CAS  Google Scholar 

  21. Faulkner, H., Humphreys, N., Renauld, J.C., Van Snick, J. & Grencis, R. Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol. 27, 2536–2540 (1997).

    Article  CAS  Google Scholar 

  22. Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    Article  CAS  Google Scholar 

  23. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V.K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    Article  CAS  Google Scholar 

  24. Wurster, A.L., Withers, D.J., Uchida, T., White, M.F. & Grusby, M.J. Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent rescue from apoptosis. Mol. Cell. Biol. 22, 117–126 (2002).

    Article  CAS  Google Scholar 

  25. Li, M.O. & Flavell, R.A. Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity 28, 468–476 (2008).

    Article  Google Scholar 

  26. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    Article  CAS  Google Scholar 

  27. Uhlig, H.H. et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J. Immunol. 177, 5852–5860 (2006).

    Article  CAS  Google Scholar 

  28. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  Google Scholar 

  29. Kaplan, M.H. & Grusby, M.J. Regulation of T helper cell differentiation by STAT molecules. J. Leukoc. Biol. 64, 2–5 (1998).

    Article  CAS  Google Scholar 

  30. Ziegler-Heitbrock, L. et al. IFN-α induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3. J. Immunol. 171, 285–290 (2003).

    Article  CAS  Google Scholar 

  31. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  Google Scholar 

  32. Hoffmann, K.F., Cheever, A.W. & Wynn, T.A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).

    Article  CAS  Google Scholar 

  33. Li, C., Corraliza, I. & Langhorne, J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67, 4435–4442 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gazzinelli, R.T., Oswald, I.P., James, S.L. & Sher, A. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-γ-activated macrophages. J. Immunol. 148, 1792–1796 (1992).

    CAS  PubMed  Google Scholar 

  35. Boussiotis, V.A. et al. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J. Clin. Invest. 105, 1317–1325 (2000).

    Article  CAS  Google Scholar 

  36. Carvalho, E.M. et al. Restoration of IFN-γ production and lymphocyte proliferation in visceral leishmaniasis. J. Immunol. 152, 5949–5956 (1994).

    CAS  PubMed  Google Scholar 

  37. King, C.L. et al. Cytokine control of parasite-specific anergy in human urinary schistosomiasis. IL-10 modulates lymphocyte reactivity. J. Immunol. 156, 4715–4721 (1996).

    CAS  PubMed  Google Scholar 

  38. Makela, M.J. et al. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization. Proc. Natl. Acad. Sci. USA 97, 6007–6012 (2000).

    Article  CAS  Google Scholar 

  39. Rubtsov, Y.P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  Google Scholar 

  40. Temann, U.A., Geba, G.P., Rankin, J.A. & Flavell, R.A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med. 188, 1307–1320 (1998).

    Article  CAS  Google Scholar 

  41. Temann, U.A., Ray, P. & Flavell, R.A. Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J. Clin. Invest. 109, 29–39 (2002).

    Article  CAS  Google Scholar 

  42. Lu, L.F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  Google Scholar 

  43. Tepper, R.I. et al. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell 62, 457–467 (1990).

    Article  CAS  Google Scholar 

  44. Annacker, O. et al. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051–1061 (2005).

    Article  CAS  Google Scholar 

  45. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kozoriz, R. Chandwaskar and D. Lee for cell sorting and technical assistance; and R. Flavell (Yale University School of Medicine) for IL-10–GFP mice. Supported by the US National Institutes of Health (R01AI073542-01 to M.O., and 1R01NS045937-01, 2R01NS35685-06, 2R37NS30843-11, 1R01A144880-03, 2P01A139671-07, 1P01NS38037-04, 1R01NS046414 and a Javits Neuroscience Investigator Award to V.K.K.), the National Multiple Sclerosis Society (RG-2571-D-9 to V.K.K. and RG-3882-A-1 to M.O.), the Juvenile Diabetes Research Foundation Center for Immunological Tolerance at Harvard Medical School, and the National Multiple Sclerosis Society, New York (A.A. and V.D.).

Author information

Authors and Affiliations

Authors

Contributions

V.D. and A.A. performed and designed the experiments, collected the data and contributed to the writing of the manuscript; H.K. and G.G. helped with the immunoprecipitation assays; W.G. and T.B.S. checked Foxp3 expression in IL-4-transgenic T cells; R.A.S. did the pathology analysis; M.M. diagnosed the neurological signs found in RAG-1–reconstituted mice; W.E. and S.K. helped in the studies using anti-IL-9; I.-C.H. generated and provided conditional GATA-3-deficient mice; M.O. designed experiments; V.K.K. designed the experiments, supervised the study and edited the manuscript.

Corresponding authors

Correspondence to Mohamed Oukka or Vijay K Kuchroo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 5097 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dardalhon, V., Awasthi, A., Kwon, H. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat Immunol 9, 1347–1355 (2008). https://doi.org/10.1038/ni.1677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing