Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity

An Erratum to this article was published on 01 February 2009

This article has been updated

Abstract

The Duffy antigen receptor for chemokines (DARC) belongs to a family of 'silent' heptahelical chemokine receptors that do not couple to G proteins and fail to transmit measurable intracellular signals. DARC binds most inflammatory chemokines and is prominently expressed on venular endothelial cells, where its function has remained contentious. Here we show that DARC, like other silent receptors, internalized chemokines but did not effectively scavenge them. Instead, DARC mediated chemokine transcytosis, which led to apical retention of intact chemokines and more leukocyte migration across monolayers expressing DARC. Mice overexpressing DARC on blood vessel endothelium had enhanced chemokine-induced leukocyte extravasation and contact-hypersensitivity reactions. Thus, interactions of chemokines with DARC support their activity on apposing leukocytes in vitro and in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Colocalization of DARC and CXCL8 in venular endothelial cells in human skin.
Figure 2: DARC immunoreactivity in MDCK-DARC monolayers.
Figure 3: Chemokine transport by DARC across MDCK-DARC monolayers.
Figure 4: Chemokine degradation by MDCK cells expressing DARC or D6.
Figure 5: Chemokine transport by DARC across HUVEC-DARC monolayers.
Figure 6: CCL2-induced monocyte migration across MDCK cells and HUVECs.
Figure 7: Recruitment of neutrophils into chemokine injection sites in mDARCtg and wild-type mice.
Figure 8: Acute CHS reaction to oxazolone in mDARCtg and wild-type mice.

Change history

  • 16 January 2009

    NOTE: In the version of this article initially published, the images in Fig. 2c,e were truncated. Intact images have replaced those versions. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rot, A. Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol. Today 13, 291–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Webb, L.M., Ehrengruber, M.U., Clark-Lewis, I., Baggiolini, M. & Rot, A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc. Natl. Acad. Sci. USA 90, 7158–7162 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parish, C.R. The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 6, 633–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka, Y., Adams, D.H. & Shaw, S. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol. Today 14, 111–115 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Proudfoot, A.E. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100, 1885–1890 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, L., Fuster, M., Sriramarao, P. & Esko, J.D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Hub, E. & Rot, A. Binding of RANTES, MCP-1, MCP-3, and MIP-1α to cells in human skin. Am. J. Pathol. 152, 749–757 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J.S. et al. Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo. J. Immunol. 170, 5244–5251 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Rot, A. Contribution of Duffy antigen to chemokine function. Cytokine Growth Factor Rev. 16, 687–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Pruenster, M. & Rot, A. Throwing light on DARC. Biochem. Soc. Trans. 34, 1005–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Peiper, S.C. et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med. 181, 1311–1317 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Gardner, L., Patterson, A.M., Ashton, B.A., Stone, M.A. & Middleton, J. The human Duffy antigen binds selected inflammatory but not homeostatic chemokines. Biochem. Biophys. Res. Commun. 321, 306–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hadley, T.J. & Peiper, S.C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89, 3077–3091 (1997).

    CAS  PubMed  Google Scholar 

  17. Nibbs, R., Graham, G. & Rot, A. Chemokines on the move: control by the chemokine “interceptors” Duffy blood group antigen and D6. Semin. Immunol. 15, 287–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Mantovani, A., Bonecchi, R. & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol. 6, 907–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Fra, A.M. et al. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol. 170, 2279–2282 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Weber, M. et al. The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol. Biol. Cell 15, 2492–2508 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Comerford, I., Milasta, S., Morrow, V., Milligan, G. & Nibbs, R. The chemokine receptor CCX–CKR mediates effective scavenging of CCL19 in vitro. Eur. J. Immunol. 36, 1904–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol. 6, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez de la Torre, Y. et al. Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proc. Natl. Acad. Sci. USA 104, 2319–2324 (2007).

    Article  Google Scholar 

  24. Nibbs, R.J. et al. The atypical chemokine receptor D6 suppresses the development of chemically induced skin tumors. J. Clin. Invest. 117, 1884–1892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darbonne, W.C. et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J. Clin. Invest. 88, 1362–1369 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dawson, T.C. et al. Exaggerated response to endotoxin in mice lacking the Duffy antigen/receptor for chemokines (DARC). Blood 96, 1681–1684 (2000).

    CAS  PubMed  Google Scholar 

  27. Du, J. et al. Potential role for Duffy antigen chemokine-binding protein in angiogenesis and maintenance of homeostasis in response to stress. J. Leukoc. Biol. 71, 141–153 (2002).

    CAS  PubMed  Google Scholar 

  28. Bonecchi, R. et al. Regulation of D6 chemokine scavenging activity by ligand- and Rab11-dependent surface up-regulation. Blood 112, 493–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhuri, A. et al. Detection of Duffy antigen in the plasma membranes and caveolae of vascular endothelial and epithelial cells of nonerythroid organs. Blood 89, 701–712 (1997).

    CAS  PubMed  Google Scholar 

  30. McCulloch, C.V. et al. Multiple roles for the C-terminal tail of the chemokine scavenger D6. J. Biol. Chem. 283, 7972–7982 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Drake, M.T., Shenoy, S.K. & Lefkowitz, R.J. Trafficking of G protein-coupled receptors. Circ. Res. 99, 570–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Brzostowski, J.A. & Kimmel, A.R. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem. Sci. 26, 291–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Handel, T.M., Johnson, Z., Crown, S.E., Lau, E.K. & Proudfoot, A.E. Regulation of protein function by glycosaminoglycans–as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Christopherson, K.W., Campbell, J.J., Travers, J.B. & Hromas, R.A. Low-molecular-weight heparins inhibit CCL21-induced T cell adhesion and migration. J. Pharmacol. Exp. Ther. 302, 290–295 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Smith, E. et al. Duffy antigen receptor for chemokines and CXCL5 are essential for the recruitment of neutrophils in a multicellular model of rheumatoid arthritis synovium. Arthritis Rheum. 58, 1968–1973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horton, L.W., Yu, Y., Zaja-Milatovic, S., Strieter, R.M. & Richmond, A. Opposing roles of murine duffy antigen receptor for chemokine and murine CXC chemokine receptor-2 receptors in murine melanoma tumor growth. Cancer Res. 67, 9791–9799 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chakera, A., Seeber, R.M., John, A.E., Eidne, K.A. & Greaves, D.R. The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol. Pharmacol. 73, 1362–1370 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Fukuma, N. et al. A role of the Duffy antigen for the maintenance of plasma chemokine concentrations. Biochem. Biophys. Res. Commun. 303, 137–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Jilma-Stohlawetz, P. et al. Fy phenotype and gender determine plasma levels of monocyte chemotactic protein. Transfusion 41, 378–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Palframan, R.T., Collins, P.D., Williams, T.J. & Rankin, S.M. Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91, 2240–2248 (1998).

    CAS  PubMed  Google Scholar 

  41. Serbina, N.V. & Pamer, E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kashiwazaki, M. et al. A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. Int. Immunol. 15, 1219–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J.S. et al. The Duffy antigen modifies systemic and local tissue chemokine responses following lipopolysaccharide stimulation. J. Immunol. 177, 8086–8094 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Tournamille, C., Colin, Y., Cartron, J.P. & Le Van, K.C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat. Genet. 10, 224–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Horuk, R. et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–1184 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. He, W. et al. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe 4, 52–62 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat. Med. 12, 933–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Lentsch, A.B. The Duffy antigen/receptor for chemokines (DARC) and prostate cancer. A role as clear as black and white? FASEB J. 16, 1093–1095 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Segerer, S. et al. The Duffy antigen receptor for chemokines is up-regulated during acute renal transplant rejection and crescentic glomerulonephritis. Kidney Int. 58, 1546–1556 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, J.S. et al. Enhanced expression of Duffy antigen in the lungs during suppurative pneumonia. J. Histochem. Cytochem. 51, 159–166 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Bruhl, H. et al. Expression of DARC, CXCR3 and CCR5 in giant cell arteritis. Rheumatology (Oxford) 44, 309–313 (2005).

    Article  CAS  Google Scholar 

  52. Gardner, L. et al. Temporal expression pattern of Duffy antigen in rheumatoid arthritis: up-regulation in early disease. Arthritis Rheum. 54, 2022–2026 (2006).

    Article  PubMed  Google Scholar 

  53. Schneider, M.A., Meingassner, J.G., Lipp, M., Moore, H.D. & Rot, A. CCR7 is required for the in vivo function of CD4+CD25+ regulatory T cells. J. Exp. Med. 204, 735–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Uchikawa (Japanese Red Cross) for anti-DARC; J.S. Lee (University of Pittsburgh) and J.S. Rhim (Uniformed Services University of the Health Sciences) for HUVECs transfected with DARC or empty vector; G. Posthuma (Utrecht University) for colloidal gold–conjugated protein A; S. Huber for genotyping; and M. Hahn and W. Höllriegl for husbandry. Supported by the European Union Sixth Framework Programme (LSHB-CT-2005-518167 to M.P., L.M., P.B., G.J.G. and A.Ro.), Deutsche Forschungsgemeinschaft (SE 888/4-1 to S.S.) and the Else-Kröner Fresenius Stiftung (to S.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.P., L.M. and P.B. designed and did experiments, analyzed data and contributed to the preparation of the manuscript; S.D., M.Z. and J.M. designed and did experiments and analyzed data; A.Ri., G.J.G., S.S. and R.J.B.N. provided critical material and contributed to data analysis; and A.Ro. directed the research, designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Antal Rot.

Ethics declarations

Competing interests

At the time of this study, M.P., L.M., P.B., S.D., M.Z. and A.Ro. were employees of the Novartis Institutes for BioMedical Research, Vienna.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Table 1 (PDF 1012 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pruenster, M., Mudde, L., Bombosi, P. et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 10, 101–108 (2009). https://doi.org/10.1038/ni.1675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing