Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling

Abstract

Communication between the immune and nervous systems, each of which is able to react rapidly to environmental stimuli, may confer a survival advantage. However, precisely how the nervous system influences the immune response and whether neural modulation of immune function is biologically important are not well understood. Here we report that neuronal exocytosis of neuropeptides from dense core vesicles suppressed the survival of Caenorhabditis elegans and their clearance of infection with the human bacterial pathogen Pseudomonas aeruginosa. This immunomodulatory function was mediated by INS-7, an insulin-like neuropeptide whose induction was associated with Pseudomonas virulence. INS-7 secreted from the nervous system functioned in a non–cell autonomous way to activate the insulin pathway and alter basal and inducible expression of immunity-related genes in intestinal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diminished secretion of neuropeptides from DCV confers greater resistance to killing by PA14.
Figure 2: Prolonged survival of neurosecretion mutants correlates with greater resistance to colonization by PA14 and higher expression of immunity-related genes.
Figure 3: Hypersecretion confers sensitivity to pathogens.
Figure 4: Neuroendocrine regulation of the antimicrobial response occurs through insulin signaling.
Figure 5: Neuronal function of ins-7 regulates immunity.

Similar content being viewed by others

References

  1. Brogden, K.A., Guthmiller, J.M., Salzet, M. & Zasloff, M. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol. 6, 558–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sternberg, E.M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 6, 318–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kin, N.W. & Sanders, V.M. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 79, 1093–1104 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Nurrish, S.J. An overview of C. elegans trafficking mutants. Traffic 3, 2–10 (2002).

    Article  PubMed  Google Scholar 

  5. Gravato-Nobre, M.J. & Hodgkin, J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol. 7, 741–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. Neuronal mechanisms of Caenorhabditis elegans and pathogenic bacteria interactions. Curr. Opin. Microbiol. 11, 257–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A.J. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, T. et al. Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nat. Immunol. 6, 211–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809–821 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Shivers, R.P., Youngman, M.J. & Kim, D.H. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr. Opin. Microbiol. 11, 251–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shapira, M. et al. A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc. Natl. Acad. Sci. USA 103, 14086–14091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai, T., Fukushige, T., Notkins, A.L. & Krause, M. Insulinoma-associated protein IA-2, a vesicle transmembrane protein, genetically interacts with UNC-31/CAPS and affects neurosecretion in Caenorhabditis elegans. J. Neurosci. 24, 3115–3124 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Speese, S. et al. UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J. Neurosci. 27, 6150–6162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Richmond, J. Synaptic function. WormBook doi:10.1895/wormbook.1.69.1 (30 Dec 2005).

  15. Saifee, O., Wei, L. & Nonet, M.L. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol. Biol. Cell 9, 1235–1252 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Charlie, N.K., Schade, M.A., Thomure, A.M. & Miller, K.G. Presynaptic UNC-31 (CAPS) is required to activate the Gαs pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 172, 943–961 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Desai, C., Garriga, G., McIntire, S.L. & Horvitz, H.R. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y., Lu, H. & Bargmann, C.I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kass, J., Jacob, T.C., Kim, P. & Kaplan, J.M. The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. J. Neurosci. 21, 9265–9272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacob, T.C. & Kaplan, J.M. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J. Neurosci. 23, 2122–2130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan, M.W., Mahajan-Miklos, S. & Ausubel, F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96, 715–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nonet, M.L., Saifee, O., Zhao, H., Rand, J.B. & Wei, L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J. Neurosci. 18, 70–80 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richmond, J.E., Weimer, R.M. & Jorgensen, E.M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avery, L., Bargmann, C.I. & Horvitz, H.R. The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics 134, 455–464 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Banyai, L. & Patthy, L. Amoebapore homologs of Caenorhabditis elegans. Biochim. Biophys. Acta 1429, 259–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kato, Y. et al. abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem. J. 361, 221–230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nurrish, S., Segalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Gα0 decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lackner, M.R., Nurrish, S.J. & Kaplan, J.M. Facilitation of synaptic transmission by EGL-30 Gqα and EGL-8 PLCβ: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Darby, C. & Falkow, S. Mimicry of a G protein mutation by pertussis toxin expression in transgenic Caenorhabditis elegans. Infect. Immun. 69, 6271–6275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garsin, D.A. et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Pierce, S.B. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 15, 672–686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Bargmann, C.I. & Horvitz, H.R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Ailion, M., Inoue, T., Weaver, C.I., Holdcraft, R.W. & Thomas, J.H. Neurosecretory control of aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 96, 7394–7397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Henderson, S.T. & Johnson, T.E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11, 1975–1980 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hertweck, M., Gobel, C. & Baumeister, R. C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev. Cell 6, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 28, 139–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Murphy, C.T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Hsu, A.L., Murphy, C.T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Murphy, C.T., Lee, S.-J. & Kenyon, C. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 19046–19050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alper, S., McBride, S.J., Lackford, B., Freedman, J.H. & Schwartz, D.A. Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol. Cell. Biol. 27, 5544–5553 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Evans, E., Kawli, T. & Tan, M.-W. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in C. elegans. PLoS Pathog. 10.1371/journal.ppat.1000175 (2008).

  44. Morita, K., Chow, K.L. & Ueno, N. Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-β family. Development 126, 1337–1347 (1999).

    CAS  PubMed  Google Scholar 

  45. Glaser, R. & Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Liberati, N.T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103, 2833–2838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Shibata, Y., Branicky, R., Landaverde, I.O. & Hekimi, S. Redox regulation of germline and vulval development in Caenorhabditis elegans. Science 302, 1779–1782 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Espelt, M.V., Estevez, A.Y., Yin, X. & Strange, K. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C β and γ. J. Gen. Physiol. 126, 379–392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lamitina, S.T., Morrison, R., Moeckel, G.W. & Strange, K. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am. J. Physiol. Cell Physiol. 286, C785–C791 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Chen and E. Evans for strain construction (ins-7(lf) 'rescue' under Pins-7 and Punc-119); A. Fire (Stanford University) for advice, vectors and use of the microinjection apparatus; S. Cohen for microscope use; K. Miller (Oklahoma Medical Research Foundation), K. Strange (Vanderbilt University), C. Darby (University of California, San Francisco), C. Kenyon (University of California, San Francisco), and K. Shen (Stanford University) for sharing strains and vectors; and all members of the Tan laboratory, A. Brunet and V. Nanjundiah for critical review and discussion of this work. Some nematode strains were provided by the Caenorhabditis Genetics Center (funded by the US National Institutes of Health National Center for Research Resources); the ins-7 mutant was provided by the Japanese National BioResource Project (funded by the Ministry of Education, Culture, Science, Sports and Technology, Japan). Supported by the US National Institutes of Health (GM66269 to M.-W.T.).

Author information

Authors and Affiliations

Authors

Contributions

T.K. did the experiments, and T.K. and M.-W.T. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Man-Wah Tan.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Tables 1–8 (PDF 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawli, T., Tan, MW. Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 9, 1415–1424 (2008). https://doi.org/10.1038/ni.1672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing