Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CEACAM1 inhibits Toll-like receptor 2–triggered antibacterial responses of human pulmonary epithelial cells

Abstract

Although Moraxella catarrhalis and Neisseria meningitidis are important human pathogens, they often colonize the human respiratory tract without causing overt clinical symptoms. Both pathogens express structurally unrelated proteins that share the ability to stimulate the adhesion molecule CEACAM1 expressed on human cells. Here we demonstrate that the interaction of CEACAM1 with ubiquitous surface protein A1 expressed on M. catarrhalis or with opacity-associated proteins on N. meningitidis resulted in reduced Toll-like receptor 2–initiated transcription factor NF-κB–dependent inflammatory responses of primary pulmonary epithelial cells. These inhibitory effects were mediated by tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif of CEACAM1 and by recruitment of the phosphatase SHP-1, which negatively regulated Toll-like receptor 2–dependent activation of the phosphatidylinositol 3-OH kinase–Akt kinase pathway. Our results identify a CEACAM1-dependent immune-evasion strategy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Influence of the UspA1-CEACAM1 interaction on the M. catarrhalis–induced release of IL-8 from PBECs.
Figure 2: Function of CEACAM1 in the M. catarrhalis–induced release of IL-8 from A549 cells.
Figure 3: CEACAM1 attenuates the M. catarrhalis-induced, TLR2-mediated NF-κB activation through ITIM and localizes together with TLR2.
Figure 4: UspA1-mediated CEACAM1 ITIM phosphorylation and subsequent SHP-1 recruitment negatively regulates bacteria-induced release of IL-8.
Figure 5: The UspA1-CEACAM1 interaction induces SHP-1–TLR2 interactions and dephosphorylation of the p85α-binding motif of TLR2.
Figure 6: CEACAM1-induced SHP-1 recruitment controls PI(3)K-dependent phosphorylation of Akt at Ser437.
Figure 7: Ligation of CEACAM1 by neisserial Opa proteins decreases TLR2-dependent immune responses.

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  Article  Google Scholar 

  2. O'Neill, L.A.J. TLRs play good cop, bad cop in the lung. Nat. Med. 11, 1161–1162 (2005).

    CAS  Article  Google Scholar 

  3. Murphy, T.F. The role of bacteria in airway inflammation in exacerbations of chronic obstructive pulmonary disease. Curr. Opin. Infect. Dis. 19, 225–230 (2006).

    Article  Google Scholar 

  4. Almoudi, O. Bacterial infection and risk factors in outpatients with acute exacerbation of chronic obstructive pulmonary disease: a 2-year prospective study. Respirology 2, 283–287 (2007).

    Article  Google Scholar 

  5. Murphy, T.F., Brauer, A.L., Grant, B.J.B. & Sethi, S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am. J. Respir. Crit. Care Med. 172, 195–199 (2005).

    Article  Google Scholar 

  6. N'Guessan, P.D. et al. Moraxella catarrhalis induces ERK- and NF-κB-dependent COX-2 and prostaglandin E-2 in lung epithelium. Eur. Respir. J. 30, 443–451 (2007).

    CAS  Article  Google Scholar 

  7. Slevogt, H. et al. Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-κB activation and histone deacetylase activity reduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L818–L826 (2006).

    CAS  Article  Google Scholar 

  8. Slevogt, H. et al. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell. Microbiol. 9, 694–707 (2007).

    CAS  Article  Google Scholar 

  9. Caugant, D.A., Tzanakaki, G. & Kriz, P. Lessons from meningococcal carriage studies. FEMS Microbiol. Rev. 31, 52–63 (2007).

    CAS  Article  Google Scholar 

  10. Murphy, T.F., Sethi, S. & Niederman, M.S. The role of bacteria in exacerbations of COPD - a constructive view. Chest 118, 204–209 (2000).

    CAS  Article  Google Scholar 

  11. Sethi, S., Maloney, L., Grove, L., Wrona, C. & Berenson, C.S. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173, 991–998 (2006).

    Article  Google Scholar 

  12. Hill, D.J. & Virji, M. A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. Mol. Microbiol. 48, 117–129 (2003).

    CAS  Article  Google Scholar 

  13. Hill, D.J. et al. The variable P5 proteins of typeable and non-typeable Haemophilus influenzae target human CEACAM1. Mol. Microbiol. 39, 850–862 (2001).

    CAS  Article  Google Scholar 

  14. Virji, M., Watt, S.M., Barker, S., Makepeace, K. & Doyonnas, R. The N-domain of the human CD66a adhesion molecule is a target for opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol. Microbiol. 22, 929–939 (1996).

    CAS  Article  Google Scholar 

  15. Gray-Owen, S.D. & Blumberg, R.S. CEACAM1: contact-dependent control of immunity. Nat. Rev. Immunol. 6, 433–446 (2006).

    CAS  Article  Google Scholar 

  16. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    CAS  Article  Google Scholar 

  17. Barrow, A.D. & Trowsdale, J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. Eur. J. Immunol. 36, 1646–1653 (2006).

    CAS  Article  Google Scholar 

  18. Nagaishi, T. et al. SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms. Immunity 25, 769–781 (2006).

    CAS  Article  Google Scholar 

  19. Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    CAS  Article  Google Scholar 

  20. Bousquet, C. et al. Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway. EMBO J. 25, 3943–3954 (2006).

    CAS  Article  Google Scholar 

  21. Dubois, M.J. et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat. Med. 12, 549–556 (2006).

    CAS  Article  Google Scholar 

  22. Soong, G., Reddy, B., Sokol, S., Adamo, R. & Prince, A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest. 113, 1482–1489 (2004).

    CAS  Article  Google Scholar 

  23. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a RacI-dependent pathway. Nat. Immunol. 1, 533–540 (2000).

    CAS  Article  Google Scholar 

  24. Chun, J. & Prince, A. Activation of Ca2+-dependent signaling by TLR2. J. Immunol. 177, 1330–1337 (2006).

    CAS  Article  Google Scholar 

  25. Ruse, M. & Knaus, U.G. New players in TLR-mediated innate immunity - P13K and small Rho GTPases. Immunol. Res. 34, 33–48 (2006).

    CAS  Article  Google Scholar 

  26. Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    CAS  Article  Google Scholar 

  27. Massengale, A.R. et al. Reduced interleukin-8 production by cystic fibrosis airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 20, 1073–1080 (1999).

    CAS  Article  Google Scholar 

  28. Patel, I.S. et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57, 759–764 (2002).

    CAS  Article  Google Scholar 

  29. Chen, T. et al. Biliary glycoprotein (BGPa, CD66a, CEACAM1) mediates inhibitory signals. J. Leukoc. Biol. 70, 335–340 (2001).

    CAS  PubMed  Google Scholar 

  30. Cuevas, B. et al. SHP-1 regulates Lck-induced phosphatidylinositol 3-kinase phosphorylation and activity. J. Biol. Chem. 274, 27583–27589 (1999).

    CAS  Article  Google Scholar 

  31. de Jonge, M.I. et al. Conformational analysis of opacity proteins from Neisseria meningitidis. Eur. J. Biochem. 269, 5215–5223 (2002).

    CAS  Article  Google Scholar 

  32. de Jonge, M.I., Hamstra, H.J., van Alphen, L., Dankert, J. & van der Ley, P. Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors. Mol. Microbiol. 50, 1005–1015 (2003).

    CAS  Article  Google Scholar 

  33. Boulton, I.C. & Gray-Owen, S.D. Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes. Nat. Immunol. 3, 229–236 (2002).

    CAS  Article  Google Scholar 

  34. Lee, H.S.W., Ostrowski, M.A. & Gray-Owen, S.D. CEACAM1 dynamics during Neisseria gonorrhoeae suppression of CD4+ T lymphocyte activation. J. Immunol. 180, 6827–6835 (2008).

    CAS  Article  Google Scholar 

  35. Nakayama, M. et al. Paired Ig-like receptors bind to bacteria and shape TLR-mediated cytokine production. J. Immunol. 178, 4250–4259 (2007).

    CAS  Article  Google Scholar 

  36. An, H. et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol. 9, 542–550 (2008).

    CAS  Article  Google Scholar 

  37. Strassheim, D. et al. Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J. Immunol. 172, 5727–5733 (2004).

    CAS  Article  Google Scholar 

  38. Strassheim, D., Kim, J.Y., Park, J.S., Mitra, S. & Abraham, E. Involvement of SHIP in TLR2-induced neutrophil activation and acute lung injury. J. Immunol. 174, 8064–8071 (2005).

    CAS  Article  Google Scholar 

  39. Cuevas, B.D. et al. Tyrosine phosphorylation of p85 relieves its inhibitory sctivity on phosphatidylinositol 3-kinase. J. Biol. Chem. 276, 27455–27461 (2001).

    CAS  Article  Google Scholar 

  40. Bergman, M.A. et al. CD4+ T cells and Toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect. Immun. 73, 1350–1356 (2005).

    CAS  Article  Google Scholar 

  41. Lee, H.K., Lee, J. & Tobias, P.S. Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J. Immunol. 168, 4012–4017 (2002).

    CAS  Article  Google Scholar 

  42. Mogensen, T.H., Paludan, S.R., Kilian, M. & Ostergaard, L. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J. Leukoc. Biol. 80, 267–277 (2006).

    CAS  Article  Google Scholar 

  43. Berger, C.N., Billker, O., Meyer, T.F., Servin, A.L. & Kansau, I. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol. Microbiol. 52, 963–983 (2004).

    CAS  Article  Google Scholar 

  44. Leusch, H.G., Drzeniek, Z., Markospusztai, Z. & Wagener, C. Binding of Escherichia coli and salmonella strains to members of the carcinoembryonic antigen family - differential binding-inhibition by aromatic α-glycosides of mannose. Infect. Immun. 59, 2051–2057 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cullen, B.R. Enhancing and confirming the specificity of RNAi experiments. Nat. Methods 3, 677–681 (2006).

    CAS  Article  Google Scholar 

  46. Nordstrom, T., Forsgren, A. & Riesbeck, K. The Immunoglobulin D-binding part of the outer membrane protein MID from Moraxella catarrhalis comprises 238 amino acids and a tetrameric structure. J. Biol. Chem. 277, 34692–34699 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Hellwig, F. Schreiber, A. Kuehn and M. Brant for technical assistance; J. Lippman for support in confirming the siRNA experiments; E. Hansen (University of Texas Southwestern Medical Center) for O35E and O35E.1; P. van der Ley (Laboratory of Vaccine Research, National Institute of Public Health and the Environment) for the parental E. coli strain PC2984 and the Opa J129– and Opa B128–expressing strains; C. Kirschning (Technical University Munich) for the pFlag-CMV-TLR2 expression plasmids; and H. Heine (Research Center Borstel) for GFP-tagged TLR2 plasmids. Supported by Deutsche Forschungsgemeinschaft (SL 153/1-1 to H.S. and OP 86/5-1 to B.O.), the Swedish Medical Research Council (K.R.) and Bundesministerium für Bildung und Forschung (project 13 of the German Chronic Obstructive Pulmonary Disease and Systemic Consequences-Comorbidities Network to H.S. and project B3 of the Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of Severe Sepsis to N.S.).

Author information

Authors and Affiliations

Authors

Contributions

H.S. planned the project; H.S. and B.B.S. designed and directed the experiments; B.B.S., S.Z. and H.S. did signaling analysis with immunoprecipitation, immunoblot analysis and ELISA; B.B.S. generated, characterized, produced and purified monoclonal antibody 18/20; A.H. did and analyzed the confocal laser-scanning microscopy; B.O., J.E. and S.Z. did the siRNA and overexpression experiments; B.O., P.D.N'G. and J.Z. provided advice for the experiments and analyzed data; B.B.S. and J.Z. did flow cytometry; W.Z. generated the CEACAM1 expression plasmids; K.R. produced recombinant UspA1; W.Z. and K.R. edited the manuscript; B.T.-W. isolated and characterized the PBECs; N.S. and L.L. supervised the research and contributed to manuscript criticism; and H.S. and B.B.S. wrote the manuscript.

Corresponding author

Correspondence to Hortense Slevogt.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Methods (PDF 314 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Slevogt, H., Zabel, S., Opitz, B. et al. CEACAM1 inhibits Toll-like receptor 2–triggered antibacterial responses of human pulmonary epithelial cells. Nat Immunol 9, 1270–1278 (2008). https://doi.org/10.1038/ni.1661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1661

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing