Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity

Abstract

The acquisition of cytotoxic effector function by CD8+ T cells is crucial for the control of intracellular infection and tumor invasion. However, it remains unclear which signaling pathways are required for the differentiation of CD8+ cytotoxic T lymphocytes. We show here that Notch2-deficient T cells had impaired differentiation into cytotoxic T lymphocytes. In addition, dendritic cells with lower expression of the Notch ligand Delta-like 1 induced the differentiation of cytotoxic T lymphocytes less efficiently. We found that the intracellular domain of Notch2 interacted with a phosphorylated form of the transcription factor CREB1, and together these proteins bound the transcriptional coactivator p300 to form a complex on the promoter of the gene encoding granzyme B. Our results suggest that the highly regulated, dynamic control of T cell cytotoxicity depends on the integration of Notch2 and CREB1 signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signals control cytotoxic T cell differentiation in vitro and in vivo.
Figure 2: Notch2 on CD8+ T cells promotes CTL induction in vitro and in vivo.
Figure 3: Notch2 signaling induces the transcription of genes encoding CTL effector molecules independently of Eomes.
Figure 4: Notch2 directly regulates Gzmb transcription.
Figure 5: CREB1 is required for Notch2-mediated granzyme B expression through interaction of the intracellular domain of Notch2 with pCREB1.
Figure 6: Notch2 interacts with pCREB1 and stably recruits p300 to the Gzmb promoter.

Similar content being viewed by others

References

  1. Wong, P. & Pamer, E.G. CD8 T cell responses to infectious pathogens. Annu. Rev. Immunol. 21, 29–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Williams, M.A. & Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Glimcher, L.H., Townsend, M.J., Sullivan, B.M. & Lord, G.M. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4, 900–911 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Antia, R., Ganusov, V.V. & Ahmed, R. The role of models in understanding CD8+ T-cell memory. Nat. Rev. Immunol. 5, 101–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Intlekofer, A.M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Radtke, F., Wilson, A., Mancini, S.J. & MacDonald, H.R. Notch regulation of lymphocyte development and function. Nat. Immunol. 5, 247–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Osborne, B.A. & Minter, L.M. Notch signalling during peripheral T-cell activation and differentiation. Nat. Rev. Immunol. 7, 64–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Pear, W.S. & Radtke, F. Notch signaling in lymphopoiesis. Semin. Immunol. 15, 69–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Maekawa, Y. et al. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19, 549–559 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tsukumo, S. & Yasutomo, K. Notch governing mature T cell differentiation. J. Immunol. 173, 7109–7113 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zuniga-Pflucker, J.C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang, T.C. et al. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27, 100–110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong, K.K. et al. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J. Clin. Invest. 112, 1741–1750 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palaga, T., Miele, L., Golde, T.E. & Osborne, B.A. TCR-mediated Notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Clarke, S.R. The critical role of CD40/CD40L in the CD4-dependent generation of CD8+ T cell immunity. J. Leukoc. Biol. 67, 607–614 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Muller, U. et al. Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur. J. Immunol. 33, 70–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Oswald, F. et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol. 21, 7761–7774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, W., Kasper, L.H., Lerach, S., Jeevan, T. & Brindle, P.K. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. EMBO J. 26, 2890–2903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bray, S.J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Minter, L.M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat. Immunol. 6, 680–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Intlekofer, A.M., John Wherry, E. & Reiner, S.L. Not-so-great expectations: re-assessing the essence of T-cell memory. Immunol. Rev. 211, 203–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163, 723–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dahlqvist, C. et al. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130, 6089–6099 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Takizawa, T., Ochiai, W., Nakashima, K. & Taga, T. Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res. 31, 5723–5731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Itoh, F. et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23, 541–551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gustafsson, M.V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Barton, K. et al. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379, 81–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Roy, M., Pear, W.S. & Aster, J.C. The multifaceted role of Notch in cancer. Curr. Opin. Genet. Dev. 17, 52–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Hurlbut, G.D., Kankel, M.W., Lake, R.J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 19, 166–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Siu, Y.T. & Jin, D.Y. CREB–a real culprit in oncogenesis. FEBS J. 274, 3224–3232 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, A.E., Ginty, D.D. & Fan, C.M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Kitamura (Tokyo University), S. Reiner (University of Pennsylvania) and J. Fujisawa (Kansai Medical University) for reagents; R. Germain (US National Institutes of Health) for the DCEK cell line and for discussions; K. Ikuta for critical review of the manuscript; C. Kinouchi for technical assistance; and K. Yamakawa for secretarial assistance. Supported by the Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (S)), The Ministry of Education, Culture, Sports, Science and Technology (Grant-in-Aid for Scientific Research on Priority Areas), the Takeda Science Foundation, the Sumitomo Foundation and the Mochida Memorial Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.Ma., Y.Mi., C.I., T.K., A.K. and H.K. did research and analyzed data; H.Y. established antibodies; M.S.-Y., T.S., I.T., and S.C. established genes modified mice; S.S. provided advice for the experiments; and Y.Ma. and K.Y. designed research and wrote the paper.

Corresponding author

Correspondence to Koji Yasutomo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Table 1 and Supplementary Methods (PDF 3597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maekawa, Y., Minato, Y., Ishifune, C. et al. Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9, 1140–1147 (2008). https://doi.org/10.1038/ni.1649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing