Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D

Abstract

MICA and MICB are stress-induced ligands recognized by the activating receptor NKG2D. A microRNA encoded by human cytomegalovirus downregulates MICB expression by targeting a specific site in the MICB 3′ untranslated region. As this site is conserved among different MICB alleles and a similar site exists in the MICA 3′ untranslated region, we speculated that these sites are targeted by cellular microRNAs. Here we identified microRNAs that bound to these MICA and MICB 3′ untranslated region sequences and obtained data suggesting that these microRNAs maintain expression of MICA and MICB protein under a certain threshold and facilitate acute upregulation of MICA and MICB during cellular stress. These microRNAs were overexpressed in various tumors and we demonstrate here that they aided tumor avoidance of immune recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible influence of microRNA on MICA and MICB expression.
Figure 2: Shared target sequences recognized by both viral and human microRNAs to control MICA and MICB expression.
Figure 3: Human microRNAs specifically downregulate MICA and MICB expression.
Figure 4: Human microRNAs control MICA and MICB expression in normal conditions.
Figure 5: Control of MICA and MICB expression during short-term stress responses.
Figure 6: MicroRNAs set a threshold for MICA and MICB protein expression.
Figure 7: Overexpression of relevant microRNAs confers protection from lysis by NK cells.

Similar content being viewed by others

References

  1. Du, T. & Zamore, P.D. microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652 (2005).

    Article  CAS  Google Scholar 

  2. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  3. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  4. Cho, W.C. OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6, 60 (2007).

    Article  Google Scholar 

  5. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  Google Scholar 

  6. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060–1065 (2006).

    Article  CAS  Google Scholar 

  7. Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    Article  CAS  Google Scholar 

  8. Lodish, H.F., Zhou, B., Liu, G. & Chen, C.Z. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol. 8, 120–130 (2008).

    Article  CAS  Google Scholar 

  9. Eagle, R.A. & Trowsdale, J. Promiscuity and the single receptor: NKG2D. Nat. Rev. Immunol. 7, 737–744 (2007).

    Article  CAS  Google Scholar 

  10. Gasser, S. & Raulet, D.H. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130–142 (2006).

    Article  CAS  Google Scholar 

  11. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  Google Scholar 

  12. Venkataraman, G.M., Suciu, D., Groh, V., Boss, J.M. & Spies, T. Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J. Immunol. 178, 961–969 (2007).

    Article  CAS  Google Scholar 

  13. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  Google Scholar 

  14. Boissel, N. et al. BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J. Immunol. 176, 5108–5116 (2006).

    Article  CAS  Google Scholar 

  15. Nedvetzki, S. et al. Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood 109, 3776–3785 (2007).

    Article  CAS  Google Scholar 

  16. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    Article  CAS  Google Scholar 

  17. Landais, S., Landry, S., Legault, P. & Rassart, E. Oncogenic potential of the miR-106–363 cluster and its implication in human T-cell leukemia. Cancer Res. 67, 5699–5707 (2007).

    Article  CAS  Google Scholar 

  18. Voorhoeve, P.M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  Google Scholar 

  19. Skalsky, R.L. et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81, 12836–12845 (2007).

    Article  CAS  Google Scholar 

  20. Gottwein, E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099 (2007).

    Article  CAS  Google Scholar 

  21. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  22. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  23. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  24. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004).

    Article  CAS  Google Scholar 

  25. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  Google Scholar 

  26. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2, 255–260 (2001).

    Article  CAS  Google Scholar 

  27. Gasser, S., Orsulic, S., Brown, E.J. & Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  Google Scholar 

  28. Mocarski, E.S. Jr. Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell. Microbiol. 6, 707–717 (2004).

    Article  CAS  Google Scholar 

  29. Jonjic, S., Babic, M., Polic, B. & Krmpotic, A. Immune evasion of natural killer cells by viruses. Curr. Opin. Immunol. 20, 30–38 (2008).

    Article  CAS  Google Scholar 

  30. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).

    Article  CAS  Google Scholar 

  31. Andresen, L., Jensen, H., Pedersen, M.T., Hansen, K.A. & Skov, S. Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells. J. Immunol. 179, 8235–8242 (2007).

    Article  CAS  Google Scholar 

  32. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  33. Wiemann, K. et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J. Immunol. 175, 720–729 (2005).

    Article  CAS  Google Scholar 

  34. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7, 517–523 (2006).

    Article  CAS  Google Scholar 

  35. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nat. Genet. 38 Suppl, S20–S24 (2006).

    Article  CAS  Google Scholar 

  36. Varghese, J. & Cohen, S.M. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 21, 2277–2282 (2007).

    Article  CAS  Google Scholar 

  37. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  38. Vasudevan, S., Tong, Y. & Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  Google Scholar 

  39. Leung, A.K. & Sharp, P.A. microRNAs: a safeguard against turmoil? Cell 130, 581–585 (2007).

    Article  CAS  Google Scholar 

  40. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  Google Scholar 

  41. Hayakawa, Y. & Smyth, M.J. NKG2D and cytotoxic effector function in tumor immune surveillance. Semin. Immunol. 18, 176–185 (2006).

    Article  CAS  Google Scholar 

  42. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    Article  CAS  Google Scholar 

  43. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  Google Scholar 

  44. Doubrovina, E.S. et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J. Immunol. 171, 6891–6899 (2003).

    Article  CAS  Google Scholar 

  45. Xu, K., Ma, H., McCown, T.J., Verma, I.M. & Kafri, T. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. 3, 97–104 (2001).

    Article  CAS  Google Scholar 

  46. Kafri, T., Blomer, U., Peterson, D.A., Gage, F.H. & Verma, I.M. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17, 314–317 (1997).

    Article  CAS  Google Scholar 

  47. Shi, R. & Chiang, V.L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519–525 (2005).

    Article  CAS  Google Scholar 

  48. Wolf, D.G. et al. Emergence of late cytomegalovirus central nervous system disease in hematopoietic stem cell transplant recipients. Blood 101, 463–465 (2003).

    Article  CAS  Google Scholar 

  49. Skov, S. et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 65, 11136–11145 (2005).

    Article  CAS  Google Scholar 

  50. Mandelboim, O. et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J. Exp. Med. 184, 913–922 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Cosman (Amgen) for the NKG2D-Ig constructs and A. Bernard (Hôpital de L'Archet) for anti-CD99. Supported by the United States–Israel Binational Science Foundation (O.M.), the Israeli Cancer Research Foundation (O.M.), the Israeli Science Foundation (O.M.), the European Consortium (MRTN-CT-2005 and LSCH-CT-2005-518178 to O.M.), the Association for International Cancer Research (O.M.) and the Israel Academy of Sciences and Humanities (Adams Fellowship to N.S.-G.).

Author information

Authors and Affiliations

Authors

Contributions

N.S.-G. designed and did the experiments; C.G. helped with mouse experiments; M.B., E.H., M.E., N.S. and M.M. provided reagents; O.M. designed the experiments and supervised the project; and N.S.-G. and O.M. analyzed the results and wrote the paper.

Corresponding author

Correspondence to Ofer Mandelboim.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Table 1 and Methods (PDF 557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern-Ginossar, N., Gur, C., Biton, M. et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9, 1065–1073 (2008). https://doi.org/10.1038/ni.1642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing