Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum

Abstract

The parasite Toxoplasma gondii replicates in a specialized intracellular vacuole and causes disease in many species. Protection from toxoplasmosis is mediated by CD8+ T cells, but the T. gondii antigens and host genes required for eliciting protective immunity are poorly defined. Here we identified GRA6, a polymorphic protein secreted in the parasitophorous vacuole, as the source of the immunodominant and protective decapeptide HF10 presented by the H-2Ld major histocompatibility complex class I molecule. Presentation of the HF10–H-2Ld ligand required proteolysis by ERAAP, the endoplasmic reticulum aminopeptidase associated with antigen processing. Consequently, expansion of protective CD8+ T cell populations was impaired in T. gondii–infected ERAAP-deficient mice, which were more susceptible to toxoplasmosis. Thus, endoplasmic reticulum proteolysis is critical for eliciting protective immunity to a vacuolar parasite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uncontrolled parasite replication in ERAAP-deficient H-2d mice and greater susceptibility to T. gondii infection.
Figure 2: All T. gondii–specific CD8+ T cell hybridomas are stimulated by H-2Ld MHC class I.
Figure 3: T. gondii–specific CD8+ T cell hybrids recognize the HF10 decapeptide presented by H-2Ld MHC class I.
Figure 4: The HF10–H-2Ld complex is the only detectable ligand recognized by CD8+ T cells in T. gondii–infected H-2d mice.
Figure 5: Immunization with HF10 protects mice from toxoplasmosis.
Figure 6: Presentation of the HF10–H-2Ld complex requires proteasomal activity and TAP transport.
Figure 7: Presentation of HF10–H-2Ld complexes requires proteolysis in the endoplasmic reticulum.

Similar content being viewed by others

References

  1. Montoya, J.G. & Liesenfeld, O. Toxoplasmosis. Lancet 363, 1965–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Yap, G.S. & Sher, A. Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology 201, 240–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Gazzinelli, R.T., Eltoum, I., Wynn, T.A. & Sher, A. Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-α and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J. Immunol. 151, 3672–3681 (1993).

    CAS  PubMed  Google Scholar 

  4. Schluter, D. et al. Both lymphotoxin-α and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J. Immunol. 170, 6172–6182 (2003).

    Article  PubMed  Google Scholar 

  5. Suzuki, Y., Orellana, M.A., Schreiber, R.D. & Remington, J.S. Interferon-γ: the major mediator of resistance against Toxoplasma gondii. Science 240, 516–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Goldszmid, R.S. et al. TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-γ production. J. Exp. Med. 204, 2591–2602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan, I.A. et al. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog. 2, e49 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lutjen, S., Soltek, S., Virna, S., Deckert, M. & Schluter, D. Organ- and disease-stage-specific regulation of Toxoplasma gondii-specific CD8-T-cell responses by CD4 T cells. Infect. Immun. 74, 5790–5801 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buzoni-Gatel, D., Lepage, A.C., Dimier-Poisson, I.H., Bout, D.T. & Kasper, L.H. Adoptive transfer of gut intraepithelial lymphocytes protects against murine infection with Toxoplasma gondii. J. Immunol. 158, 5883–5889 (1997).

    CAS  PubMed  Google Scholar 

  10. Gazzinelli, R.T., Hakim, F.T., Hieny, S., Shearer, G.M. & Sher, A. Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J. Immunol. 146, 286–292 (1991).

    CAS  PubMed  Google Scholar 

  11. Suzuki, Y. & Remington, J.S. Dual regulation of resistance against Toxoplasma gondii infection by Lyt-2+ and Lyt-1+, L3T4+ T cells in mice. J. Immunol. 140, 3943–3946 (1988).

    CAS  PubMed  Google Scholar 

  12. Parker, S.J., Roberts, C.W. & Alexander, J. CD8+ T cells are the major lymphocyte subpopulation involved in the protective immune response to Toxoplasma gondii in mice. Clin. Exp. Immunol. 84, 207–212 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown, C.R. et al. Definitive identification of a gene that confers resistance against Toxoplasma cyst burden and encephalitis. Immunology 85, 419–428 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammer, G.E., Kanaseki, T. & Shastri, N. The final touches make perfect the peptide-MHC class I repertoire. Immunity 26, 397–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Blanchard, N. & Shastri, N. Coping with loss of perfection in the MHC class I peptide repertoire. Curr. Opin. Immunol. 20, 82–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammer, G.E., Gonzalez, F., Champsaur, M., Cado, D. & Shastri, N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat. Immunol. 7, 103–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Firat, E. et al. The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation. J. Immunol. 178, 2241–2248 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA 103, 9202–9207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammer, G.E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of ERAAP, the MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol. 8, 101–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Karttunen, J., Sanderson, S. & Shastri, N. Detection of rare antigen presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA 89, 6020–6024 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan, I.A., Ely, K.H. & Kasper, L.H. Antigen-specific CD8+ T cell clone protects against acute Toxoplasma gondii infection in mice. J. Immunol. 152, 1856–1860 (1994).

    CAS  PubMed  Google Scholar 

  23. Kim, S.K. & Boothroyd, J.C. Stage-specific expression of surface antigens by Toxoplasma gondii as a mechanism to facilitate parasite persistence. J. Immunol. 174, 8038–8048 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Sanderson, S. & Shastri, N. LacZ inducible peptide/MHC specific T-hybrids. Int. Immunol. 6, 369–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Mendoza, L., Malarkannan, S. & Shastri, N. in Methods in Molecular Biology. Antigen Processing and Presentation Protocols Vol. 156 (ed. Solheim, J.C.) 255–264 (Humana Press, Totowa, NJ, 2000).

    Book  Google Scholar 

  26. Lecordier, L. et al. Characterization of a dense granule antigen of Toxoplasma gondii (GRA6) associated to the network of the parasitophorous vacuole. Mol. Biochem. Parasitol. 70, 85–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Mercier, C. et al. Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins. Mol. Biol. Cell 13, 2397–2409 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kunisawa, J. & Shastri, N. Hsp90α chaperones large proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24, 523–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kwok, L.Y. et al. The induction and kinetics of antigen-specific CD8 T cells are defined by the stage specificity and compartmentalization of the antigen in murine toxoplasmosis. J. Immunol. 170, 1949–1957 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Gajria, B. et al. ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res. 36, D553–D556 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kong, J.T., Grigg, M.E., Uyetake, L., Parmley, S. & Boothroyd, J.C. Serotyping of Toxoplasma gondii infections in humans using synthetic peptides. J. Infect. Dis. 187, 1484–1495 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Gubbels, M.J., Striepen, B., Shastri, N., Turkoz, M. & Robey, E.A. Class I major histocompatibility complex presentation of antigens that escape from the parasitophorous vacuole of Toxoplasma gondii. Infect. Immun. 73, 703–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dzierszinski, F. et al. Presentation of Toxoplasma gondii antigens via the endogenous major histocompatibility complex class I pathway in nonprofessional and professional antigen-presenting cells. Infect. Immun. 75, 5200–5209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morrot, A. & Zavala, F. Regulation of the CD8+ T cell responses against Plasmodium liver stages in mice. Int. J. Parasitol. 34, 1529–1534 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kumar, K.A. et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444, 937–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Martin, D.L. et al. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog. 2, e77 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Munks, M.W. et al. Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J. Immunol. 176, 3760–3766 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Cesbron-Delauw, M.F., Gendrin, C., Travier, L., Ruffiot, P. & Mercier, C. Apicomplexa in mammalian cells: trafficking to the parasitophorous vacuole. Traffic 9, 657–664 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Hakansson, S., Charron, A.J. & Sibley, L.D. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 20, 3132–3144 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor, S. et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314, 1776–1780 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Saeij, J.P. et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314, 1780–1783 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilbert, L.A., Ravindran, S., Turetzky, J.M., Boothroyd, J.C. & Bradley, P.J. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot. Cell 6, 73–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ravindran, S. & Boothroyd, J.C. Secretion of proteins into host cells by Apicomplexan parasites. Traffic 9, 647–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Shastri, N., Cardinaud, S., Schwab, S.R., Serwold, T. & Kunisawa, J. All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol. Rev. 207, 31–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Reichmann, G., Villegas, E.N., Craig, L., Peach, R. & Hunter, C.A. The CD28/B7 interaction is not required for resistance to Toxoplasma gondii in the brain but contributes to the development of immunopathology. J. Immunol. 163, 3354–3362 (1999).

    CAS  PubMed  Google Scholar 

  48. Kirisits, M.J., Mui, E. & McLeod, R. Measurement of the efficacy of vaccines and antimicrobial therapy against infection with Toxoplasma gondii. Int. J. Parasitol. 30, 149–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Levy, F., Johnsson, N., Rumenapf, T. & Varshavsky, A. Using ubiquitin to follow the metabolic fate of a protein. Proc. Natl. Acad. Sci. USA 93, 4907–4912 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Boothroyd (Stanford University) for the parental Pru strain of T. gondii and the GFP-expressing derivative; R. McLeod (University of Chicago) for B1 internal control DNA; F. Levy (University of Epalinges) for the pEGFP-Ub vector; R. Vance (University of California, Berkeley) for the colony-stimulating factor–producing 3T3 cells; W. Sha (University of California, Berkeley) for the pMSCV2.2 retroviral vector; D. King (University of California, Berkeley) for peptide synthesis; J. Boothroyd and R. McLeod for discussions; the Center for Host-Pathogen Studies core facilities and S.-W. Chan for technical assistance; and B. Striepen for comments on the manuscript. Supported by the US National Institutes of Health (N.S. and E.A.R.) and the international Human Frontier Science Program (LT00841/2005-l to N.B.).

Author information

Authors and Affiliations

Authors

Contributions

N.B. designed and did all experiments in collaboration with F.G. (cDNA library), M.S. (brain cell isolation), N.T.J. (footpad immunization and measurement of the natural killer cell response), T.C. (processed peptide analysis) and A.J.S. (parasite burden measurements); E.A.R. and N.S. provided guidance and contributed to the experimental design; and N.B. and N.S. wrote the manuscript together with input from other authors.

Corresponding authors

Correspondence to Nicolas Blanchard or Nilabh Shastri.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, N., Gonzalez, F., Schaeffer, M. et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat Immunol 9, 937–944 (2008). https://doi.org/10.1038/ni.1629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing