Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An autonomous CDR3δ is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by γδ T cells

Abstract

It remains unclear whether γδ T cell antigen receptors (TCRs) detect antigens in a way similar to antibodies or αβ TCRs. Here we show that reactivity between the G8 and KN6 γδ TCRs and the major histocompatibility complex class Ib molecule T22 could be recapitulated, with retention of wild-type ligand affinity, in an αβ TCR after grafting of a G8 or KN6 complementarity-determining region 3-δ (CDR3δ) loop in place of the CDR3α loop of an αβ TCR. We also found that a shared sequence motif in CDR3δ loops of all T22-reactive γδ TCRs bound T22 in energetically distinct ways, and that T10d, which bound G8 with weak affinity, was converted into a high-affinity ligand by a single point mutation. Our results demonstrate unprecedented autonomy of a single CDR3 loop in antigen recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the G8 γδ TCR in complex with the MHC class Ib molecule T22.
Figure 2: Transfer of CDR3δ onto CDR3α.
Figure 3: CDR3δ grafted into the αβ TCR retains wild-type affinity for T10 and T22 ligands.
Figure 4: Heterogeneous energetic 'landscapes' of the interactions of G8 and KN6 CDR3δ with T10 and T22.
Figure 5: The G8 γδ TCR binds to strong and weak stimulatory ligands with different affinity.
Figure 6: Substitutions responsible for differential G8 γδ TCR binding and stimulation by T22 and T10b versus T10d.
Figure 7: A single amino acid substitution converts T10d into a strong G8 γδ TCR agonist.

Similar content being viewed by others

References

  1. Adams, E.J., Chien, Y.H. & Garcia, K.C. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Allison, T.J., Winter, C.C., Fournie, J.J., Bonneville, M. & Garboczi, D.N. Structure of a human γδ T-cell antigen receptor. Nature 411, 820–824 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Battistini, L. et al. Phenotypic and cytokine analysis of human peripheral blood γδ T cells expressing NK cell receptors. J. Immunol. 159, 3723–3730 (1997).

    CAS  PubMed  Google Scholar 

  4. Spada, F.M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrick, D.A. et al. Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373, 255–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Wen, L. et al. Primary γδ cell clones can be defined phenotypically and functionally as Th1/Th2 cells and illustrate the association of CD4 with Th2 differentiation. J. Immunol. 160, 1965–1974 (1998).

    CAS  PubMed  Google Scholar 

  7. Brenner, M.B. et al. Identification of a putative second T-cell receptor. Nature 322, 145–149 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Fisch, P. et al. Gamma/delta T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J. Exp. Med. 171, 1567–1579 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Wright, A. et al. Cytotoxic T lymphocytes specific for self tumor immunoglobulin express T cell receptor δ chain. J. Exp. Med. 169, 1557–1564 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kapp, J.A., Kapp, L.M. & McKenna, K.C. γδ T cells play an essential role in several forms of tolerance. Immunol. Res. 29, 93–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. De Libero, G. Tissue distribution, antigen specificity and effector functions of γδ T cells in human diseases. Springer Semin. Immunopathol. 22, 219–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Garcia, K.C. & Adams, E.J. How the T cell receptor sees antigen–a structural view. Cell 122, 333–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, D.R. & Cohen, G.H. Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 93, 7–12 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4–CD8-cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Schild, H. et al. The nature of major histocompatibility complex recognition by γδ T cells. Cell 76, 29–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Weintraub, B.C., Jackson, M.R. & Hedrick, S.M. Gamma delta T cells can recognize nonclassical MHC in the absence of conventional antigenic peptides. J. Immunol. 153, 3051–3058 (1994).

    CAS  PubMed  Google Scholar 

  20. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Scotet, E. et al. Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22, 71–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, R.M. et al. A murine CD4-, CD8- T cell receptor-γδ T lymphocyte clone specific for herpes simplex virus glycoprotein I. J. Immunol. 148, 983–988 (1992).

    CAS  PubMed  Google Scholar 

  23. Elliott, J.F., Rock, E.P., Patten, P.A., Davis, M.M. & Chien, Y.H. The adult T-cell receptor δ-chain is diverse and distinct from that of fetal thymocytes. Nature 331, 627–631 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Crowley, M.P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bluestone, J.A., Cron, R.Q., Cotterman, M., Houlden, B.A. & Matis, L.A. Structure and specificity of T cell receptor γ/δ on major histocompatibility complex antigen-specific CD3+, CD4, CD8 T lymphocytes. J. Exp. Med. 168, 1899–1916 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Bonneville, M. et al. Recognition of a self major histocompatibility complex TL region product by γδ T-cell receptors. Proc. Natl. Acad. Sci. USA 86, 5928–5932 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito, K. et al. Recognition of the product of a novel MHC TL region gene (27b) by a mouse γδ T cell receptor. Cell 62, 549–561 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Shin, S. et al. Antigen recognition determinants of γδ T cell receptors. Science 308, 252–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Li, H. et al. Structure of the Vδ domain of a human γδ T-cell antigen receptor. Nature 391, 502–506 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Maynard, J. et al. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22, 81–92 (2005).

    CAS  PubMed  Google Scholar 

  31. Moriwaki, S., Korn, B.S., Ichikawa, Y., van Kaer, L. & Tonegawa, S. Amino acid substitutions in the floor of the putative antigen-binding site of H-2T22 affect recognition by a γδ T-cell receptor. Proc. Natl. Acad. Sci. USA 90, 11396–11400 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Padlan, E. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Reiser, J.B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, C.C. et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317, 1930–1934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kodandapani, R., Veerapandian, B., Kunicki, T.J. & Ely, K.R. Crystal structure of the OPG2 Fab. An antireceptor antibody that mimics an RGD cell adhesion site. J. Biol. Chem. 270, 2268–2273 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Stanfield, R.L., Dooley, H., Flajnik, M.F. & Wilson, I.A. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305, 1770–1773 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Matis, L.A., Cron, R. & Bluestone, J.A. Major histocompatibility complex-linked specificity of γδ receptor-bearing T lymphocytes. Nature 330, 262–264 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, C.V. et al. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073–1093 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Holler, P.D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patten, P.A. et al. Transfer of putative complementarity-determining region loops of T cell receptor V domains confers toxin reactivity but not peptide/MHC specificity. J. Immunol. 150, 2281–2294 (1993).

    CAS  PubMed  Google Scholar 

  42. Presta, L.G. et al. Humanization of an antibody directed against IgE. J. Immunol. 151, 2623–2632 (1993).

    CAS  PubMed  Google Scholar 

  43. Feng, D., Bond, C.J., Ely, L.K., Maynard, J. & Garcia, K.C. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction 'codon'. Nat. Immunol. 8, 975–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Huseby, E.S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hewitt, E.W. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maynard, J. et al. High-level bacterial secretion of single-chain αβ T-cell receptors. J. Immunol. Methods 306, 51–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Minor, D.L. Jr. & Kim, P.S. Measurement of the β-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Crowley, M.P., Reich, Z., Mavaddat, N., Altman, J.D. & Chien, Y. The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the γδ T cell, G8. J. Exp. Med. 185, 1223–1230 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wingren, C., Crowley, M.P., Degano, M., Chien, Y. & Wilson, I.A. Crystal structure of a γδ T cell receptor ligand T22: a truncated MHC-like fold. Science 287, 310–314 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (R01 AI65504 to K.C.G. and R01 AI073922 to E.J.A.) and the Howard Hughes Medical Institute (K.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

E.J.A. designed, did and analyzed experiments; P.S. designed, did and analyzed circular dichroism experiments; S.S. assisted in cell-stimulation assays; Y.-H.C. provided intellectual insight; and E.J.A. and K.C.G. provided intellectual guidance and prepared the manuscript.

Corresponding authors

Correspondence to Erin J Adams or K Christopher Garcia.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 1818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, E., Strop, P., Shin, S. et al. An autonomous CDR3δ is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by γδ T cells. Nat Immunol 9, 777–784 (2008). https://doi.org/10.1038/ni.1620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing