Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Toll-like receptor 2–integrin β3 complex senses bacterial lipopeptides via vitronectin

Abstract

Toll-like receptor 2 (TLR2) initiates inflammation in response to bacterial lipopeptide (BLP). However, the molecular mechanisms enabling the detection of BLP by TLR2 are unknown. Here we investigated the interaction of BLP with human serum proteins and identified vitronectin as a BLP-recognition molecule. Vitronectin and its receptor, integrin β3, were required for BLP-induced TLR2-mediated activation of human monocytes. Furthermore, monocytes from patients with Glanzmann thrombasthenia, which lack integrin β3, were completely unresponsive to BLP. In addition, integrin β3 formed a complex with TLR2 and this complex dissociated after BLP stimulation. Notably, vitronectin and integrin β3 coordinated responses to other TLR2 agonists such as lipoteichoic acid and zymosan. Our findings show that vitronectin and integrin β3 contribute to the initiation of TLR2 responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vitronectin from serum binds to BLP and facilitates BLP-induced activation of THP-1 cells.
Figure 2: THP-1 differentiation leads to greater sensitivity to BLP and ITGB3 upregulation.
Figure 3: BLP-induced TNF secretion by THP-1 requires RGD-dependent integrins.
Figure 4: BLP-induced secretion TNF from THP-1 cells requires integrin β3.
Figure 5: Monocytes from patients with Glanzmann thrombasthenia do not respond to BLP.
Figure 6: Integrin β3 forms a complex with TLR2 in unstimulated THP-1 cells.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr . & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Schumann, R.R. et al. Structure and function of lipopolysaccharide binding protein. Science 249, 1429–1431 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Jeannin, P. et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22, 551–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ip, W.K., Takahashi, K., Moore, K.J., Stuart, L.M. & Ezekowitz, R.A. Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. J. Exp. Med. 205, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He, Y.W. et al. The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens. Nat. Immunol. 5, 88–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Heinzelmann, M. & Bosshart, H. Heparin binds to lipopolysaccharide (LPS)-binding protein, facilitates the transfer of LPS to CD14, and enhances LPS-induced activation of peripheral blood monocytes. J. Immunol. 174, 2280–2287 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. West, A.P., Koblansky, A.A. & Ghosh, S. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol. 22, 409–437 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Tobias, P.S. et al. Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J. Immunol. 150, 3011–3021 (1993).

    CAS  PubMed  Google Scholar 

  9. Gioannini, T.L. et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc. Natl. Acad. Sci. USA 101, 4186–4191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Braun, V. & Bosch, V. Repetitive sequences in the murein-lipoprotein of the cell wall of Escherichia coli. Proc. Natl. Acad. Sci. USA 69, 970–974 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tokuda, H. & Matsuyama, S. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta 1693, 5–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Aliprantis, A.O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Brightbill, H.D. et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Jin, M.S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Schroder, N.W. et al. Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses. J. Immunol. 173, 2683–2691 (2004).

    Article  PubMed  Google Scholar 

  18. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Preissner, K.T. Structure and biological role of vitronectin. Annu. Rev. Cell Biol. 7, 275–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Chhatwal, G.S., Preissner, K.T., Muller-Berghaus, G. & Blobel, H. Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect. Immun. 55, 1878–1883 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ginsberg, M.H. et al. Immunochemical and amino-terminal sequence comparison of two cytoadhesins indicates they contain similar or identical beta subunits and distinct alpha subunits. J. Biol. Chem. 262, 5437–5440 (1987).

    CAS  PubMed  Google Scholar 

  23. Suzuki, S. et al. cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc. Natl. Acad. Sci. USA 83, 8614–8618 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Switala-Jelen, K. et al. The biological functions of β3 integrins. Folia Biol. (Praha) 50, 143–152 (2004).

    CAS  Google Scholar 

  25. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Scibelli, A. et al. Engagement of integrins as a cellular route of invasion by bacterial pathogens. Vet. J. 173, 482–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Nurden, A.T. Glanzmann thrombasthenia. Orphanet J. Rare Dis. 1, 10 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gan, Z.R., Gould, R.J., Jacobs, J.W., Friedman, P.A. & Polokoff, M.A. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J. Biol. Chem. 263, 19827–19832 (1988).

    CAS  PubMed  Google Scholar 

  29. Kim, T.W. et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J. Exp. Med. 204, 1025–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bubeck Wardenburg, J., Williams, W.A. & Missiakas, D. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc. Natl. Acad. Sci. USA 103, 13831–13836 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Underwood, P.A., Steele, J.G. & Dalton, B.A. Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. J. Cell Sci. 104, 793–803 (1993).

    CAS  PubMed  Google Scholar 

  33. Vesy, C.J., Kitchens, R.L., Wolfbauer, G., Albers, J.J. & Munford, R.S. Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes. Infect. Immun. 68, 2410–2417 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heumann, D., Lauener, R. & Ryffel, B. The dual role of LBP and CD14 in response to Gram-negative bacteria or Gram-negative compounds. J. Endotoxin Res. 9, 381–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Hallstrom, T., Trajkovska, E., Forsgren, A. & Riesbeck, K. Haemophilus influenzae surface fibrils contribute to serum resistance by interacting with vitronectin. J. Immunol. 177, 430–436 (2006).

    Article  PubMed  Google Scholar 

  36. Mukhopadhyay, S., Herre, J., Brown, G.D. & Gordon, S. The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology 112, 521–530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wooten, R.M. et al. The role of CD14 in signaling mediated by outer membrane lipoproteins of Borrelia burgdorferi. J. Immunol. 160, 5485–5492 (1998).

    CAS  PubMed  Google Scholar 

  38. Wong, K.F., Luk, J.M., Cheng, R.H., Klickstein, L.B. & Fan, S.T. Characterization of two novel LPS-binding sites in leukocyte integrin βA domain. FASEB J. 21, 3231–3239 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Cuzzola, M. et al. β2 integrins are involved in cytokine responses to whole Gram-positive bacteria. J. Immunol. 164, 5871–5876 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kagan, J.C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Triantafilou, M., Morath, S., Mackie, A., Hartung, T. & Triantafilou, K. Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J. Cell Sci. 117, 4007–4014 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Wooten, R.M. et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Burns, E., Bachrach, G., Shapira, L. & Nussbaum, G. Cutting Edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J. Immunol. 177, 8296–8300 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ylanne, J. et al. Mutation of the cytoplasmic domain of the integrin β3 subunit. Differential effects on cell spreading, recruitment to adhesion plaques, endocytosis, and phagocytosis. J. Biol. Chem. 270, 9550–9557 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Hodivala-Dilke, K.M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Retta, S.F. et al. Cross talk between β1 and αV integrins: β1 affects β3 mRNA stability. Mol. Biol. Cell 12, 3126–3138 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thiede, B. et al. Peptide mass fingerprinting. Methods 35, 237–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Jungblut and M. Schmidt for mass spectrometry; K. Ray and J. Lambers for experimental help; P. Godowski (Genentech) for anti-TLR2; and the EURIT team for siRNA molecules. Supported by the Deutsche Forschungsgemeinschaft (GraKo 1121 to G.G.) and by the European Union Marie Curie Actions (HPMF-CT-2002-01528 to J.L.d.D.).

Author information

Authors and Affiliations

Authors

Contributions

G.G. did all experiments unless stated otherwise; K.A.A. and M.B. synthesized the lipopeptides; J.L.d.D. did the BLP precipitation experiments; H.-J.L. was in charge of the patients with Glanzmann thrombasthenia; G.G., A.Z. and J.L.d.D. conceptualized and designed the research and prepared the manuscript; and A.Z. secured the funding.

Corresponding author

Correspondence to Juana L de Diego.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods and Supplementary Tables 1–4 (PDF 1628 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerold, G., Abu Ajaj, K., Bienert, M. et al. A Toll-like receptor 2–integrin β3 complex senses bacterial lipopeptides via vitronectin. Nat Immunol 9, 761–768 (2008). https://doi.org/10.1038/ni.1618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing