Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation

This article has been updated

Abstract

Calcineurin is required for B cell receptor (BCR)–induced proliferation of mature B cells. Paradoxically, loss of NFAT transcription factors, themselves calcineurin targets, induces hyperactivity, which suggests that calcineurin targets other than NFAT are required for BCR-induced proliferation. Here we demonstrate a function for the calcineurin-regulated transcription factor Mef2c in B cells. BCR-induced calcium mobilization was intact after Mef2c deletion, but loss of Mef2c caused defects in B cell proliferation and survival after BCR stimulation in vitro and lower T cell–dependent antibody responses and germinal center formation in vivo. Mef2c activity was specific to BCR stimulation, as Toll-like receptor and CD40 signaling induced normal responses in Mef2c-deficient B cells. Mef2c-dependent targets included the genes encoding cyclin D2 and the prosurvival factor Bcl-xL. Our results emphasize an unrecognized but critical function for Mef2c in BCR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mef2c has high expression in mature B cells and is efficiently deleted in splenic B cells of Mef2c-cKO mice.
Figure 2: B cell development in Mef2c-cKO mice.
Figure 3: Mef2c is required for B cell proliferation and survival in response to BCR stimulation.
Figure 4: Costimulation can restore the survival and proliferation of BCR-stimulated Mef2c-cKO B cells.
Figure 5: Mef2c-cKO mice have altered basal immunoglobulin titers and mount enhanced antibody responses to a T cell–independent antigen.
Figure 6: Mef2c-cKO mice have deficient responses to T cell–dependent antigens.
Figure 7: Early BCR-mediated signaling events in Mef2c-cKO B cells.
Figure 8: BCR-stimulated Mef2c-cKO B cells fail to induce Bcl-xL and cyclin D2.

Similar content being viewed by others

Change history

  • 08 May 2008

    In the version of this article initially published online, Figure 7c is incorrect. The error has been corrected for all versions of the article.

References

  1. Campbell, K.S. Signal transduction from the B cell antigen-receptor. Curr. Opin. Immunol. 11, 256–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Peng, S.L. et al. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Schulze-Luehrmann, J. & Ghosh, S. Antigen-receptor signaling to nuclear factor κB. Immunity 25, 701–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Huo, L. & Rothstein, T.L. Receptor-specific induction of individual AP-1 components in B lymphocytes. J. Immunol. 154, 3300–3309 (1995).

    CAS  PubMed  Google Scholar 

  5. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Norvell, A., Mandik, L. & Monroe, J.G. Engagement of the antigen-receptor on immature murine B-lymphocytes results in death by apoptosis. J. Immunol. 154, 4404–4413 (1995).

    CAS  PubMed  Google Scholar 

  7. McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Osmond, D.G. The turnover of B-cell populations. Immunol. Today 14, 34–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Gallo, E.M., Cante-Barrett, K. & Crabtree, G.R. Lymphocyte calcium signaling from membrane to nucleus. Nat. Immunol. 7, 25–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Winslow, M.M. et al. The calcineurin phosphatase complex modulates immunogenic B cell responses. Immunity 24, 141–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Ranger, A.M. et al. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Hodge, M.R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Macian, F., Lopez-Rodriguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 20, 2476–2489 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, T.T.C. & Chow, C.W. Transcription cooperation by NFAT.C/EBP composite enhancer complex. J. Biol. Chem. 278, 15874–15885 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195, 1003–1012 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blaeser, F. et al. Ca2+-dependent gene expression mediated by MEF2 transcription factors. J. Biol. Chem. 275, 197–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Youn, H.D., Chatila, T.A. & Liu, J.O. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J. 19, 4323–4331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edmondson, D.G. et al. Mef2 gene-expression marks the cardiac and skeletal-muscle lineages during mouse embryogenesis. Development 120, 1251–1263 (1994).

    CAS  PubMed  Google Scholar 

  19. Molkentin, J.D. et al. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol. Cell. Biol. 16, 2627–2636 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Molkentin, J.D. et al. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Black, B.L. et al. Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family. J. Biol. Chem. 271, 26659–26663 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Morin, S. et al. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19, 2046–2055 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miska, E.A. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18, 5099–5107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, M. et al. Regulation of the MEF2 family of transcription factors by p38. Mol. Cell. Biol. 19, 21–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lynch, J. et al. Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca(2+)-dependent signaling cascade. J. Cell Biol. 170, 37–47 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Youn, H.D., Grozinger, C.M. & Liu, J.O. Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J. Biol. Chem. 275, 22563–22567 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, Q. et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, Q. et al. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125, 4565–4574 (1998).

    CAS  PubMed  Google Scholar 

  29. Potthoff, M.J. & Olson, E.N. MEF2: a central regulator of diverse developmental programs. Development 134, 4131–4140 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Arnold, M.A. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 12, 377–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vong, L. et al. MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev. Dyn. 235, 1809–1821 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Swanson, B.J., Jack, H.M. & Lyons, G.E. Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol. Immunol. 35, 445–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Vong, L.H., Ragusa, M.J. & Schwarz, J.J. Generation of conditional Mef2cloxP/loxP mice for temporal- and tissue-specific analyses. Genesis 43, 43–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Allman, D. et al. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 167, 6834–6840 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Yazawa, N. et al. CD19 regulates innate immunity by the toll-like receptor RP105 signaling in B lymphocytes. Blood 102, 1374–1380 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Chan, V.W.F. et al. The molecular mechanism of B cell activation by toll-like receptor protein RP-105. J. Exp. Med. 188, 93–101 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakagawa, O. et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 19, 2066–2077 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rao, S. et al. Myocyte enhancer factor-related B-MEF2 is developmentally expressed in B cells and regulates the immunoglobulin J chain promoter. J. Biol. Chem. 273, 26123–26129 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Fang, W. et al. Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J. Immunol. 153, 4388–4398 (1994).

    CAS  PubMed  Google Scholar 

  42. Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 12, 631–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Stief, A. et al. Mice deficient in Cd23 reveal its modulatory role in IgE production but no role in T-cell and B-cell development. J. Immunol. 152, 3378–3390 (1994).

    CAS  PubMed  Google Scholar 

  44. Yu, P. et al. Negative feedback-regulation of Ige synthesis by murine Cd23. Nature 369, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Hodgkin, P.D., Lee, J.H. & Lyons, A.B. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. McHeyzer-Williams, L.J., Malherbe, L.P. & McHeyzer-Williams, M.G. Checkpoints in memory B-cell evolution. Immunol. Rev. 211, 255–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Deming, P.B. & Rathmell, J.C. Mitochondria, cell death, and B cell tolerance. Curr. Dir. Autoimmun. 9, 95–119 (2006).

    CAS  PubMed  Google Scholar 

  48. Wurster, A.L. et al. Interleukin-4-mediated protection of primary B cells from apoptosis through Stat6-dependent up-regulation of Bcl-xL. J. Biol. Chem. 277, 27169–27175 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Grillot, D.A.M. et al. Bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J. Exp. Med. 183, 381–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Do, R.K.G. et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med. 192, 953–964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsu, B.L. et al. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 168, 5993–5996 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, Y. et al. Relaxed negative selection in germinal centers and impaired affinity maturation in Bcl-xL transgenic mice. J. Exp. Med. 190, 399–409 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huntington, N.D. et al. CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol. 7, 190–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Murray, A.W. Recycling the cell cycle: cyclins revisited. Cell 116, 221–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Chiles, T.C. Regulation and function of cyclin D2 in B lymphocyte subsets. J. Immunol. 173, 2901–2907 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Han, J. et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, H. et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glynne, R. et al. B-lymphocyte quiescence, tolerance and activation as viewed by global gene expression profiling on microarrays. Immunol. Rev. 176, 216–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Fang, W. et al. Self-reactive B lymphocytes overexpressing Bcl-xL escape negative selection and are tolerized by clonal anergy and receptor editing. Immunity 9, 35–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Kato, Y. et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14–3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA 97, 14400–14405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, J.R. et al. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. McKinsey, T.A. et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the Howard Hughes Medical Institute (K.M.M.) and the National Institutes of Health (5P01AI031238 and 5T32HL007317).

Author information

Authors and Affiliations

Authors

Contributions

P.R.W. designed experiments, did research, analyzed and interpreted results, and wrote the manuscript; M.K. did immunohistochemistry; M.M.S. sorted B cell subsets and did Mef2c expression analysis; J.C.A. contributed gene expression microarray data for some mouse tissues; O.N. provided spleens from Srpk3-deficient mice; J.J.S. provided mice with a loxP-flanked Mef2c allele; and K.M.M. directed the study and wrote the manuscript.

Corresponding author

Correspondence to Kenneth M Murphy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 10786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilker, P., Kohyama, M., Sandau, M. et al. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 9, 603–612 (2008). https://doi.org/10.1038/ni.1609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing