Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus



The sulphur cycle plays fundamental roles in the chemistry1,2,3 and climate4,5 of Venus. Thermodynamic equilibrium chemistry at the surface of Venus favours the production of carbonyl sulphide6 and to a lesser extent sulphur dioxide. These gases are transported to the middle atmosphere by the Hadley circulation cell7,8. Above the cloud top, a sulphur oxidation cycle involves conversion of carbonyl sulphide into sulphur dioxide, which is then transported further upwards. A significant fraction of this sulphur dioxide is subsequently oxidized to sulphur trioxide and eventually reacts with water to form sulphuric acid3. Because the vapour pressure of sulphuric acid is low, it readily condenses and forms an upper cloud layer at altitudes of 60–70 km, and an upper haze layer above 70 km (ref. 9), which effectively sequesters sulphur oxides from photochemical reactions. Here we present simulations of the fate of sulphuric acid in the Venusian mesosphere based on the Caltech/JPL kinetics model3,10, but including the photolysis of sulphuric acid. Our model suggests that the mixing ratios of sulphur oxides are at least five times higher above 90 km when the photolysis of sulphuric acid is included. Our results are inconsistent with the previous model results but in agreement with the recent observations using ground-based microwave spectroscopy11 and by Venus Express12.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model results.
Figure 2
Figure 3: Parameter space for possible solutions.
Figure 4: Production/loss-rate profiles of SO2.


  1. Mills, F. P., Esposito, L. W. & Yung, Y. L. in Exploring Venus as a Terrestrial Planet (eds Esposito, L. W., Stofan, E. R. & Cravens, T. E.) 73–100 (Am. Geophys. Union, 2007).

    Book  Google Scholar 

  2. Prinn, R. G. Venus: Composition and structure of the visible clouds. Science 182, 1132–1135 (1973).

    Article  Google Scholar 

  3. Yung, Y. L. & DeMore, W. B. Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution. Icarus 51, 199–247 (1982).

    Article  Google Scholar 

  4. Crisp, D. & Titov, D. V. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W., Hunten, D. M. & Philips, R. J.) 353–384 (Univ. Arizona Press, 1997).

    Google Scholar 

  5. Hashimoto, G. L. & Abe, Y. Stabilization of Venus’ climate by a chemical–albedo feedback. Earth Planet. Space 52, 197–202 (2000).

    Article  Google Scholar 

  6. Hong, Y. & Fegley, B. Formation of carbonyl sulfide (OCS) from carbon monoxide and sulfur vapor and applications to Venus. Icarus 130, 495–504 (1997).

    Article  Google Scholar 

  7. Prinn, R. G. & Fegley, B. The atmospheres of Venus, Earth, and Mars—a critical comparison. Annu. Rev. Earth Planet. Sci. 15, 171–212 (1987).

    Article  Google Scholar 

  8. Yung, Y. L. et al. Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus. J. Geophys. Res. 114, E00B34 (2009).

    Article  Google Scholar 

  9. Esposito, L. W., Knollenberg, R. G., Marov, M. Y., Toon, O. B. & Turco, R. P. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 484–564 (Univ. Arizona Press, 1983).

    Google Scholar 

  10. Mills, F. P. I. Observations and Photochemical Modeling of the Venus Middle Atmosphere. II. Thermal Infrared Spectroscopy of Europa and Callisto. PhD thesis, California Inst. Technology 1–277 (1998).

  11. Sandor, B. J., Clancy, R. T., Moriarty-Schieven, G. & Mills, F. P. Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra. Icarus 208, 49–60 (2010).

    Article  Google Scholar 

  12. Belyaev, D. et al. Vertical profiling of SO2 above Venus’ clouds by means of SPICAV/SOIR occultations. Bull. Am. Astron. Soc. 41, 1120–1120 (2009).

    Google Scholar 

  13. Belyaev, D. et al. First observations of SO2 above Venus’ clouds by means of solar occultation in the infrared. J. Geophys. Res. 113, E00B25 (2008).

    Article  Google Scholar 

  14. Schubert, G. et al. in Exploring Venus as a Terrestrial Planet (eds Esposito, L. W., Stofan, E. R. & Cravens, T. E.) 101–120 (Am. Geophys. Union, 2007).

    Book  Google Scholar 

  15. Smrekar, S. E. et al. Recent hot-spot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).

    Article  Google Scholar 

  16. Glaze, L. S., Baloga, S. M. & Wimert, J. Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Central Vent Eruptions (41st Lunar and Planetary Science Conference). 1147–1148 (2010).

    Google Scholar 

  17. Mills, M. J. et al. Photolysis of sulfuric acid vapor by visible light as a source of the polar stratospheric CN layer. J. Geophys. Res. 110, D08201 (2005).

    Google Scholar 

  18. Stull, D. R. Vapor pressure of pure substances—inorganic compounds. Ind. Eng. Chem. 39, 540–550 (1947).

    Article  Google Scholar 

  19. Lane, J. R. & Kjaergaard, H. G. Calculated electronic transitions in sulfuric acid and implications for its photodissociation in the atmosphere. J. Phys. Chem. A 112, 4958–4964 (2008).

    Article  Google Scholar 

  20. Vaida, V., Kjaergaard, H. G., Hintze, P. E. & Donaldson, D. J. Photolysis of sulfuric acid vapor by visible solar radiation. Science 299, 1566–1568 (2003).

    Article  Google Scholar 

  21. Bertaux, J. L. et al. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649 (2007).

    Article  Google Scholar 

  22. Beyer, K. D., Hansen, A. R. & Poston, M. The search for sulfuric acid. J. Phys. Chem. A 107, 2025–2032 (2003).

    Article  Google Scholar 

  23. Toon, O. B., Turco, R., Hamill, P., Kiang, C. S. & Whitten, R. A one-dimensional model describing aerosol formation and evolution in the stratosphere: II. Sensitivity studies and comparison with observations. J. Atmos. Sci. 36, 718–736 (1979).

    Article  Google Scholar 

  24. Arnold, F. Atmospheric aerosol and cloud condensation nuclei formation: A possible influence of cosmic rays? Space Sci. Rev. 125, 169–186 (2006).

    Article  Google Scholar 

  25. Imamura, T. & Hashimoto, G. L. Microphysics of Venusian clouds in rising tropical air. J. Atmos. Sci. 58, 3597–3612 (2001).

    Article  Google Scholar 

  26. Miller, Y. & Gerber, R. B. Dynamics of vibrational overtone excitations of H2SO4, H2SO4–H2O: Hydrogen-hopping and photodissociation processes. J. Am. Chem. Soc. 128, 9594–9595 (2006).

    Article  Google Scholar 

  27. Toon, O. B., Pollack, J. B. & Turco, R. P. The ultraviolet absorber on Venus—amorphous sulfur. Icarus 51, 358–373 (1982).

    Article  Google Scholar 

  28. Carlson, R. W. Venus’ Ultraviolet Absorber and Sulfuric Acid Droplets. International Venus Conference, Aussois, France, 4–4 (2010).

    Google Scholar 

  29. Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Clim. Change 77, 211–219 (2006).

    Article  Google Scholar 

  30. Tuck, A. F. et al. On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere. Clim. Change 90, 315–331 (2008).

    Article  Google Scholar 

Download references


We thank V. Vaida, F. W. Taylor, S. E. Smrekar, F. W. DeMore and O. B. Toon for comments and M. Gerstell, N. Heavens, R. L. Shia and M. Line for reading the manuscipt. This research was supported by NASA grant NNX07AI63G to the California Institute of Technology. M-C.L. was supported by NSC grant 98-2111-M-001-014-MY3 to Academia Sinica.

Author information

Authors and Affiliations



X.Z., Y.L.Y., C.P. and F.M. contributed to the paper writing. X.Z. carried out the modelling work; M-C.L. helped with the modelling; F.M. and J-L.B. provided the data from the SPICAV instrument on board Venus Express; C.P. provided critical evaluation of the H2SO4 photolysis data; Y.L.Y. conceived and supervised the research.

Corresponding author

Correspondence to Xi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 554 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, X., Liang, MC., Montmessin, F. et al. Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus. Nature Geosci 3, 834–837 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing