Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sedimentary membrane lipids recycled by deep-sea benthic archaea

Abstract

Deep-sea sediments harbour a vast biosphere. Archaea—one of the three domains of life1—are prevalent in marine environments2,3,4,5, and comprise a significant fraction of the biomass in marine sediments6. Archaeal membranes are well characterized, and are comprised of a glycerol backbone and a nonpolar isoprenoid chain. However, the ecology of sedimentary archaea remains elusive, because it is difficult to grow them in the laboratory. Here, we trace the fate of 13C-labelled glucose added to marine sediments in Sagami Bay, Japan, to determine the in situ mechanisms of membrane synthesis. Following the addition of labelled glucose to sediment samples collected in the region, we placed the cores on the sea floor and sampled them after 9 and 405 days. We found that the 13C was incorporated into the glycerol backbone of archaeal membranes; 13C was apparent after 9 days of incubation, but most pronounced after 405 days. However, the isoprenoid chain of the membranes remained unlabelled. On the basis of the differential uptake of 13C, we suggest that the glycerol unit is synthesized de novo, whereas the isoprenoid unit is synthesized from relic archaeal membranes and detritus, because of the prevalence of these compounds in marine sediments. We therefore suggest that some benthic archaea build their membranes by recycling sedimentary organic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of benthic archaeal lipids and their carbon isotopic compositions during the in situ 13C-tracer experiments lasting 405 days.
Figure 2: Carbon isotopic compositions of δ13Ccaldarchaeol, δ13Ccrenarchaeol, δ13Cbiphytane and δ13C2,3-sn-glycerol during the course of the experiment.
Figure 3: Abundance of archaeal lipids and phylogeny of the benthic archaeal community.

Similar content being viewed by others

References

  1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms—proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  Google Scholar 

  2. DeLong, E. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    Article  Google Scholar 

  3. Ouverney, C. C. & Fuhrman, J. A. Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66, 4829–4833 (2000).

    Article  Google Scholar 

  4. Wuchter, C., Schouten, S., Boschker, H. T. S. & Sinninghe Damste, J. S. Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol. Lett. 219, 203–207 (2003).

    Article  Google Scholar 

  5. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    Article  Google Scholar 

  6. Lipp, J. S., Morono, Y., Inagaki, F. & Hinrichs, K-U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454, 991–994 (2008).

    Article  Google Scholar 

  7. Parkes, R. J., Cragg, B. A. & Wellsbury, P. Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol. J. 8, 11–28 (2000).

    Article  Google Scholar 

  8. Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    Article  Google Scholar 

  9. D’Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221 (2004).

    Article  Google Scholar 

  10. Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864 (2005).

    Article  Google Scholar 

  11. Jorgensen, B. & Boetius, A. Feast and famine-microbial life in the deep-sea bed. Nature Rev. Microbiol. 5, 770–781 (2007).

    Article  Google Scholar 

  12. Valentine, D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Rev. Microbiol. 5, 316–323 (2007).

    Article  Google Scholar 

  13. Inagaki, F. et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl Acad. Sci. USA 103, 2815–2820 (2006).

    Article  Google Scholar 

  14. Roussel, E. G. et al. Extending the sub-sea-floor biosphere. Science 320, 1046–1046 (2008).

    Article  Google Scholar 

  15. Biddle, J. F. et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems of Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006).

    Article  Google Scholar 

  16. Teske, A. & Sorensen, K. B. Uncultured archaea in deep marine subsurface sediments: Have we caught them all? ISME J. 2, 3–18 (2008).

    Article  Google Scholar 

  17. Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M. & Kitazato, H. Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: In situ tracer experiments. Limnol. Oceanogr. 50, 134–146 (2005).

    Article  Google Scholar 

  18. Kitazato, H. ‘The project Sagami’—dynamic sedimentary processes of both organic and inorganic materials at continental margins with active tectonic forcing. Prog. Oceanogr. 57, 1–2 (2003).

    Article  Google Scholar 

  19. Shah, S. R., Mollenhauer, G., Ohkouchi, N., Eglinton, T. I. & Pearson, A. Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis. Geochim. Cosmochim. Acta 72, 4577–4594 (2008).

    Article  Google Scholar 

  20. Koga, Y. & Morii, H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 71, 97–120 (2007).

    Article  Google Scholar 

  21. Verhees, C. H. et al. The unique features of glycolytic pathways in archaea. Biochem. J. 375, 231–246 (2003).

    Article  Google Scholar 

  22. Grochowski, L., Xu, H. & White, R. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J. Bacteriol. 188, 3192–3198 (2006).

    Article  Google Scholar 

  23. Lodish, H. et al. Molecular Cell Biology (W. H. Freeman & Co, 1995).

    Google Scholar 

  24. Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).

    Article  Google Scholar 

  25. White, G., Russell, N. & Tidswell, E. Bacterial scission of ether bonds. Microbiol. Rev. 60, 216–232 (1996).

    Google Scholar 

  26. Hopmans, E. C., Schouten, S., Pancost, R. D., van der Meer, M. T. J. & Sinninghe Damste, J. S. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14, 585–589 (2000).

    Article  Google Scholar 

  27. Schouten, S., Hoefs, M. J. L., Koopmans, M. P., Bosch, H. J. & Sinninghe Damste, J. S. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Org. Geochem. 29, 1305–1319 (1998).

    Article  Google Scholar 

  28. Elvert, M., Suess, E., Greinert, J. & Whiticar, M. J. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org. Geochem. 31, 1175–1187 (2000).

    Article  Google Scholar 

  29. Lane, D. J. et al. Rapid-determination of 16S ribosomal-RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).

    Article  Google Scholar 

  30. Ludwig, W. et al. ARB: A software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    Google Scholar 

Download references

Acknowledgements

The authors thank T. Terada (Marine Works Japan), the shipboard scientists for their experimental and logistic support during cruises NT06-04,-05,-22 and NT08-02 by R/V Natsushima and for providing bathymetric data. This research was supported in part by a grant from the Japan Society for the Promotion of Science, Grant-in-Aid for Creative Scientific Research (19GS0211 & 22684030) and the internship program between Japan and Germany (FY2009).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. carried out the lipids analysis and wrote the paper; Y.C. and N.O.O. supported the carbon isotope standard reagents and isotope ratio mass spectrometry analysis; H.N. and H.K. supported the 13C-substrate set-up, in situ deployment of the chamber, and core processing during cruises NT06-04, -05, -22 and NT08-02; Y.M. and F.I. supported phylogenic molecular analysis of 16S rRNA and qPCR; K-U.H. contributed to technical aspects and was involved in the study design; Y.T. and N.O. contributed to this study and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yoshinori Takano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, Y., Chikaraishi, Y., Ogawa, N. et al. Sedimentary membrane lipids recycled by deep-sea benthic archaea. Nature Geosci 3, 858–861 (2010). https://doi.org/10.1038/ngeo983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo983

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology