Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biogeochemical cycle of iron in the ocean

Abstract

Advances in iron biogeochemistry have transformed our understanding of the oceanic iron cycle over the past three decades: multiple sources of iron to the ocean were discovered, including dust, coastal and shallow sediments, sea ice and hydrothermal fluids. This new iron is rapidly recycled in the upper ocean by a range of organisms; up to 50% of the total soluble iron pool is turned over weekly in this way in some ocean regions. For example, bacteria dissolve particulate iron and at the same time release compounds — iron-binding ligands — that complex with iron and therefore help to keep it in solution. Sinking particles, on the other hand, also scavenge iron from solution. The balance between these supply and removal processes determines the concentration of dissolved iron in the ocean. Whether this balance, and many other facets of the biogeochemical cycle, will change as the climate warms remains to be seen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissolved iron vertical profiles illustrating aspects of supply and removal processes.
Figure 2: Size-partitioning of iron and iron-binding ligands with depth.
Figure 3: Modification of aerosol iron upon entering surface waters.
Figure 4: Multiple sources of new iron to the Southern Ocean.
Figure 5: Biological iron recycling in the upper ocean.
Figure 6: The influence of particle scavenging and remineralization on dissolved iron concentrations in three zones (0–250 m (blue), 250–1,000 m (orange) and >1,000 m (grey)) denoted in panels ac.

Similar content being viewed by others

References

  1. Martin, J. H. & Gordon, R. M. Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res. A. Oceanogr. Res. Papers 35, 177–196 (1988).

    Google Scholar 

  2. Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. VERTEX: Phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res. A. Oceanogr. Res. Papers 36, 649–680 (1989).

    Google Scholar 

  3. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Google Scholar 

  4. Martin, J. H. & Fitzwater, S. E. Iron-deficiency limits phytoplankton growth in the Northeast Pacific Subarctic. Nature 331, 341–343 (1988).

    Google Scholar 

  5. de baar, H. J. W. et al. On iron limitation of the Southern Ocean — experimental-observations in the Weddell and Scotia Seas. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).

    Google Scholar 

  6. Schaule, B. K. & Patterson, C. C. Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth Planet. Sci. Lett. 54, 97–116 (1981).

    Google Scholar 

  7. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Google Scholar 

  8. Gordon, R. M., Martin, J. H. & Knauer, G. A. Iron in northeast Pacific waters. Nature 299, 611–612 (1982).

    Google Scholar 

  9. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Google Scholar 

  10. de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightenment. J. Geophys. Res. Oceans 110, C09S16 (2005).

    Google Scholar 

  11. Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep-Sea Res. 49, 463–507 (2001).

    Google Scholar 

  12. Moore, C. M. et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geosci. 2, 867–871 (2009).

    Google Scholar 

  13. Boyd, P. W. et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–553 (2004).

    Google Scholar 

  14. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Google Scholar 

  15. Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Google Scholar 

  16. Landing, W. M. & Bruland, K. W. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim. Cosmochim. Acta 51, 29–43 (1987).

    Google Scholar 

  17. Martin, J. H., Fitzwater, S. E., Gordon, R. M., Hunter, C. N. & Tanner, S. J. Iron, primary production and carbon nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. 40, 115–134 (1993).

    Google Scholar 

  18. Kuma, K., Nishioka, J. & Matsunaga, K. Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol. Oceanogr. 41, 396–407 (1996).

    Google Scholar 

  19. Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 57, 137–161 (1997).

    Google Scholar 

  20. Liu, X. & Millero, F. J. The solubility of iron in seawater. Mar. Chem. 77, 43–54 (2002).

    Google Scholar 

  21. Wu, J. F., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293, 847–849 (2001).

    Google Scholar 

  22. Boyle, E. What controls dissolved iron concentrations in the world ocean? A comment. Mar. Chem. 57, 163–167 (1997).

    Google Scholar 

  23. de Baar, H. J. W. & de Jong, J. T. M. in The Biogeochemistry of Iron in Seawater Vol. 7 (eds Turner, D. R. & Hunter, K. A.) (Wiley, 2001).

    Google Scholar 

  24. Measures, C. I., Landing, W. M., Brown, M. T. & Buck, C. S. High-resolution Al and Fe data from the Atlantic Ocean CLIVAR-CO2 Repeat Hydrography A16N transect: Extensive linkages between atmospheric dust and upper ocean geochemistry. Glob. Biogeochem. Cycles 22, GB1005 (2008).

    Google Scholar 

  25. Bergquist, B. A., Wu, J. & Boyle, E. A. Variability in oceanic dissolved iron is dominated by the colloidal fraction. Geochim. Cosmochim. Acta 71, 2960–2974 (2007).

    Google Scholar 

  26. Nishioka, J., Takeda, S., Wong, C. S. & Johnson, W. Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron. Mar. Chem. 74, 157–179 (2001).

    Google Scholar 

  27. Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified Central North Pacific. Geochim. Cosmochim. Acta 58, 3171–3182 (1994).

    Google Scholar 

  28. Brown, M. T., Landing, W. M. & Measures, C. I. Dissolved and particulate Fe in the western and central North Pacific: results from the 2002 IOC cruise. Geochem. Geophys. Geosyst. 6, Q10001 (2005).

    Google Scholar 

  29. Gordon, R. M., Coale, K. H. & Johnson, K. S. Iron distributions in the equatorial Pacific: implications for new production. Limnol. Oceanogr. 42, 419–431 (1997).

    Google Scholar 

  30. Johnson, W. K., Miller, L. A., Sutherland, N. E. & Wong, C. S. Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Res. II 52, 933–953 (2005).

    Google Scholar 

  31. Johnson, K. S. et al. Developing standards for dissolved iron in seawater. Eos 88, 131–132 (2007).

    Google Scholar 

  32. Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Google Scholar 

  33. Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Google Scholar 

  34. Mawji, E. et al. Hydroxamate siderophores: Occurrence and importance in the Atlantic Ocean. Envir. Sci. Technol. 42, 8675–8680 (2008).

    Google Scholar 

  35. Boyd, P. W., Ibisanmi, E., Sander, S., Hunter, K. A. & Jackson, G. A. Remineralization of upper ocean particles: implications for iron biogeochemistry. Limnol. Oceanogr. 55, 1271–1288 (2010).

    Google Scholar 

  36. Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).

    Google Scholar 

  37. Barbeau, K. A., Rue, E. L., Bruland, K. W. & Butler, A. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413, 409–413 (2001).

    Google Scholar 

  38. Cullen, J. T., Bergquist, B. A. & Moffett, J. W. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean. Mar. Chem. 98, 295–303 (2006).

    Google Scholar 

  39. Baker, A. R. & Croot, P. L. Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 120, 4–13 (2010).

    Google Scholar 

  40. Wu, J. F. & Boyle, E. A. Iron in the Sargasso Sea: implications for the processes controlling dissolved Fe distribution in the ocean. Glob. Biogeochem. Cycles 16, 1086 (2002).

    Google Scholar 

  41. Prospero, J., Uematsu, M. & Savoie, D. in Chemical Oceanography Vol. 10 (ed. Riley, J. P.) 187–218 (Academic, 1989).

    Google Scholar 

  42. Duce, R. A. & Tindale, N. W. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36, 1715–1726 (1991).

    Google Scholar 

  43. de Baar, H. J. W. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).

    Google Scholar 

  44. Moore, J. K. & Braucher, O. Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences 5, 631–656 (2008).

    Google Scholar 

  45. Smith, J. et al. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317, 478–482 (2007).

    Google Scholar 

  46. Lannuzel, D. et al. Iron study during a time series in the western Weddell pack ice. Mar. Chem. 108, 85–95 (2008).

    Google Scholar 

  47. Klunder, P., Laan, P., Middag, R., de Baar, H. J. W. & van Ooijen, J. Dissolved iron in the Southern Ocean (Atlantic Sector) Deep-Sea Res. II: (in press).

  48. Bowie, A. R. et al. Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Glob. Biogeochem. Cycles 23, GB4034 (2009).

    Google Scholar 

  49. Blain, S. et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446, 1070–1074 (2007).

    Google Scholar 

  50. Boyd, P. W. et al. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters. Glob. Biogeochem. Cycles 19, GB4S20 (2005).

    Google Scholar 

  51. Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).

    Google Scholar 

  52. Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. 112, C07030 (2007).

    Google Scholar 

  53. Elrod, V. A., Berelson, W. M., Coale, K. H. & Johnson, K. S. The flux of iron from continental shelf sediments: a missing source for global budgets. Geophys. Res. Lett. 31, L12307 (2004).

    Google Scholar 

  54. Johnson, K. S., Chavez, F. P. & Friederich, G. E. Continental-shelf sediments as a primary source of iron for coastal phytoplankton. Nature 398, 697–700 (1999).

    Google Scholar 

  55. Wetz, M. S., Burke, H., Chase, Z., Wheeler, P. A. & Whitney, M. M. Riverine input of macronutrients, iron, and organic matter to the coastal ocean off Oregon, USA, during the winter. Limnol. Oceanogr. 51, 2221–2231 (2006).

    Google Scholar 

  56. Nishioka, J. et al. Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk. J. Geophys. Res. 112, C10012 (2007).

    Google Scholar 

  57. Mackenzie, F. T., Lantzy, R. & Paterson, V. Global trace metal cycles and predictions. J. Int. Assoc. Math. Geol. 11, 99–142 (1979).

    Google Scholar 

  58. Boyle, E. A., Edmond, J. M. & Sholkovitz, E. R. Mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 41, 1313–1324 (1977).

    Google Scholar 

  59. Johnson, K. S. Iron supply and demand in the upper ocean: is extraterrestrial dust a significant source of bioavailable iron? Glob. Biogeochem. Cycles 15, 61–63 (2001).

    Google Scholar 

  60. Sedwick, P. N., Sholkovitz, E. R. & Church, T. M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. 8, Q10Q06 (2007).

    Google Scholar 

  61. Luo, C. et al. Combustion iron distribution and deposition. Global Biogeochem. Cycles 22, GB1012 (2008).

    Google Scholar 

  62. Boyd, P. W., Mackie, D. S. & Hunter, K. A. Aerosol iron deposition to the surface ocean: modes of iron supply and biological responses. Mar. Chem. 120, 128–143 (2010).

    Google Scholar 

  63. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Google Scholar 

  64. Price, N. M. & Morel, F. M. M. in Iron Transport and Storage in Microorganisms, Plants, and Animals Vol. 35 Metal Ions in Biological Systems, 1–36 (CRC, 1998).

    Google Scholar 

  65. Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 (1983).

    Google Scholar 

  66. Hutchins, D. A. & Bruland, K. W. Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey. Mar. Ecol. Progr. Ser. 110, 259–269 (1994).

    Google Scholar 

  67. Lee, B-G. & Fisher, N. S. Release rates of trace elements and protein from decomposing planktonic debris. 1. Phytoplankton debris. J. Plankt. Res. 51, 391–421 (1993).

    Google Scholar 

  68. Kirchman, D. L. Microbial ferrous wheel. Nature 383, 303–304 (1996).

    Google Scholar 

  69. Haygood, M. G., Holt, P. D. & Butler, A. Aerobactin production by a planktonic marine Vibrio sp. Limnol. Oceanogr. 38, 1091–1097 (1993).

    Google Scholar 

  70. Wilhelm, S. W. The ecology of cyanobacteria in iron-limited environments: a review of physiology and implications for aquatic environments. Aquat. Microb. Ecol. 9, 295–303 (1995).

    Google Scholar 

  71. Sunda, W. G. in The Biogeochemistry of Iron in Seawater (eds Turner, D. R. & Hunter, K. A.) 41–84 (Wiley, 2001).

    Google Scholar 

  72. Hudson, R. J. M. & Morel, F. M. M. Iron transport in marine-phytoplankton — kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35, 1002–1020 (1990).

    Google Scholar 

  73. Shaked, Y., Kustka, A. B. & Morel, F. M. M. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50, 872–882 (2005).

    Google Scholar 

  74. Nodwell, L. M. & Price, N. M. Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton. Limnol. Oceanogr. 46, 765–777 (2001).

    Google Scholar 

  75. Strzepek, R. F. et al. Spinning the 'Ferrous Wheel': the importance of the microbial community in an iron budget during the FeCycle experiment. Glob. Biogeochem. Cycles 19, GB4S26 (2005).

    Google Scholar 

  76. Barbeau, K., Moffett, J. W., Caron, D. A., Croot, P. L. & Erdner., D. L. Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature 380, 61–64 (1996).

    Google Scholar 

  77. Maranger, R., Bird, D. F. & Price, N. M. Iron acquisition by photosynthetic marine phytoplankton from ingested bacteria. Nature 396, 248–251 (1998).

    Google Scholar 

  78. Sarthou, G. et al. The fate of biogenic iron during a phytoplankton bloom induced by natural fertilisation: Impact of copepod grazing. Deep-Sea Res. II 55, 734–752 (2008).

    Google Scholar 

  79. Mioni, C. E., Poorvin, L. & Wilhelm, S. W. Virus and siderophore-mediated transfer of available Fe between heterotrophic bacteria: characterization using an Fe-specific bioreporter. Aquat. Microb. Ecol. 41, 233–245 (2005).

    Google Scholar 

  80. Frew, R. D. et al. Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Glob. Biogeochem. Cycles 20, GB1S93 (2006).

    Google Scholar 

  81. Lamborg, C. H., Buesseler, K. O. & Lam, P. J. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program. Deep-Sea Res. II 55, 1564–1577 (2008).

    Google Scholar 

  82. Sunda, W. G. & Huntsman, S. A. Interrelated influence of iron, light, and cell size on marine phytoplankton growth. Nature 390, 389–392 (1997).

    Google Scholar 

  83. Bowie, A. R. et al. The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-Sea Res. II 48, 2703–2743 (2001).

    Google Scholar 

  84. Chever, F., Sarthou, G., Bucciarelli, E., Blain, S. & Bowie, A. R. An iron budget during the natural iron fertilisation experiment KEOPS (Kerguelen Islands, Southern Ocean). Biogeosciences 7, 455–468 (2010).

    Google Scholar 

  85. Weber, L., Völker, C., Schartau, M. & Wolf-Gladrow, D. A. Modeling the speciation and biogeochemistry of iron at the Bermuda Atlantic Time-series Study site. Glob. Biogeochem. Cycles 19, GB1019 (2005).

    Google Scholar 

  86. Archer, D. E. & Johnson, K. S. A model of the iron cycle in the ocean. Glob. Biogeochem. Cycles 14, 269–279 (2002).

    Google Scholar 

  87. Parekh, P., Follows, M. J. & Boyle, E. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).

    Google Scholar 

  88. Gnanadesikan, A., Sarmiento, J. L. & Slater, R. D. Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob. Biogeochem. Cycles 17, 1050 (2003).

    Google Scholar 

  89. Homoky, W. S., Severmann, S., Mills, R., Statham, P. & Fones, G. Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments. Geology 37, 751–754 (2009).

    Google Scholar 

  90. Lacan, F. et al. Measurement of the isotopic composition of dissolved iron in the open ocean. Geophys. Res. Lett. 35, L24610 (2008).

    Google Scholar 

  91. Kitayama, S. et al. Controls on iron distributions in the deep water column of the North Pacific Ocean: Iron(III) hydroxide solubility and marine humic-type dissolved organic matter. J. Geophys. Res. 114, C08019 (2009).

    Google Scholar 

  92. Boyle, E. A., Bergquist, B. A., Kayser, R. A. & Mahowald, N. Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochim. Cosmochim. Acta 69, 933–952 (2005).

    Google Scholar 

  93. Borer, P. M., Sulzberger, B., Reichard, P. & Kraemer, S. M. Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides. Mar. Chem. 93, 179–193 (2005).

    Google Scholar 

  94. Croot, P. L., Streu, P. & Baker, A. R. Short residence time for iron in surface seawater impacted by atmospheric dry deposition from Saharan dust events. Geophys. Res. Lett. 31, L23S08 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank A. Bowie (Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania) for providing unpublished dissolved iron data from the Southern Ocean (Fig. 1a), and L. Bucke (Department of Chemistry, University of Otago) for help with the graphics. We thank S. Solokov and S. Rintoul (CSIRO, Hobart, Tasmania) and G. Jackson (Texas A&M) for providing personal communications regarding bottom pressure torque and vertical changes in particle surface area, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Boyd.

Supplementary information

Supplementary Information

Supplementary Information (PDF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, P., Ellwood, M. The biogeochemical cycle of iron in the ocean. Nature Geosci 3, 675–682 (2010). https://doi.org/10.1038/ngeo964

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo964

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology