Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contrasting response of European forest and grassland energy exchange to heatwaves


Recent European heatwaves have raised interest in the impact of land cover conditions on temperature extremes. At present, it is believed that such extremes are enhanced by stronger surface heating of the atmosphere, when soil moisture content is below average. However, the impact of land cover on the exchange of water and energy and the interaction of this exchange with the soil water balance during heatwaves is largely unknown. Here we analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems during heatwaves. We find that initially, surface heating is twice as high over forest than over grassland. Over grass, heating is suppressed by increased evaporation in response to increased solar radiation and temperature. Ultimately, however, this process accelerates soil moisture depletion and induces a critical shift in the regional climate system that leads to increased heating. We propose that this mechanism may explain the extreme temperatures in August 2003. We conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates the impact of the most extreme heat and/or long-lasting events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Radiation and energy exchange over forest and grassland.
Figure 2: Energy exchanges at the peak of the July 2006 heatwave for neighbouring flux towers over forest and grassland.
Figure 3: Impact of land cover on local LST anomalies during heatwaves.
Figure 4: Conceptual model for flux evolution over grassland and forest during drydown.
Figure 5: Screen-level daily maximum temperature anomaly evolution and distribution during heatwaves.


  1. 1

    Schär, C. et al. The role of increasing temperature variability for European summer heatwaves. Nature 427, 332–336 (2004).

    Article  Google Scholar 

  2. 2

    Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    Article  Google Scholar 

  3. 3

    Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geosci. 3, 398–403 (2010).

    Article  Google Scholar 

  4. 4

    Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31, L02202 (2004).

    Article  Google Scholar 

  5. 5

    Della-Marta, P. M., Haylock, M. R., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).

    Article  Google Scholar 

  6. 6

    Black, E. et al. Factors contributing to the summer 2003 European heatwave. Weather 59, 217–223 (2004).

    Article  Google Scholar 

  7. 7

    Garcı´a-Herrera, R. et al. A review of the European summer heatwave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).

    Article  Google Scholar 

  8. 8

    Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. & Smith, R. B. Europe’s 2003 heat wave: A satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol. 26, 743–769 (2006).

    Article  Google Scholar 

  9. 9

    Rebetez, M., Dupont, O. & Giroud, M. An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor. Appl. Climatol. 95, 1–9 (2009).

    Article  Google Scholar 

  10. 10

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Science 437, 529–533 (2005).

    Google Scholar 

  11. 11

    Fischer, E. M., Seneviratne, S. I., Lüthi, D. & Schär, C. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34, L06707 (2007).

    Article  Google Scholar 

  12. 12

    Fouillet, A. et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 37, 309–317 (2008).

    Article  Google Scholar 

  13. 13

    Cassou, C., Terray, L. & Phillips, A. S. Tropical Atlantic influence on European heat waves. J. Clim. 18, 2805–2811 (2005).

    Article  Google Scholar 

  14. 14

    Ferranti, F. & Viterbo, P. The European summer of 2003: Sensitivity to soil water initial conditions. J. Clim. 19, 3659–3680 (2006).

    Article  Google Scholar 

  15. 15

    Shukla, J., Nobre, C. & Sellers, P. Amazon deforestation and climate change. Science 247, 1322–1325 (1990).

    Article  Google Scholar 

  16. 16

    Wang, J. et al. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl Acad. Sci. USA 106, 3670–3674 (2009).

    Article  Google Scholar 

  17. 17

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  Google Scholar 

  18. 18

    Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    Article  Google Scholar 

  19. 19

    Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Article  Google Scholar 

  20. 20

    Anderson, R. G. et al. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 10.1890/090179 (2010).

  21. 21

    Shuttleworth, J. W. & Calder, I. R. Has the Priestley–Taylor equation any relevance to forest evaporation? J. Appl. Meteorol. 18, 639–646 (1979).

    Article  Google Scholar 

  22. 22

    Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Wat. Resour. Res. 37, 701–708 (2001).

    Article  Google Scholar 

  23. 23

    Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    Article  Google Scholar 

  24. 24

    Kelliher, F. M., Leuning, R. & Schulze, E. D. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95, 153–163 (1993).

    Article  Google Scholar 

  25. 25

    Jarvis, P. G. & McNaughton, K. G. Stomatal control of transpiration—scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49 (1986).

    Article  Google Scholar 

  26. 26

    Granier, A., Biron, P. & Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. Forest Meteorol. 100, 291–308 (2000).

    Article  Google Scholar 

  27. 27

    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).

    Article  Google Scholar 

  28. 28

    Roberts, J. Forest transpiration: A conservative hydrological process? J. Hydrol. 66, 133–141 (1983).

    Article  Google Scholar 

  29. 29

    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, L23403 (2006).

    Article  Google Scholar 

  30. 30

    Wicke, W. & Bernhofer, C. Energy balance comparison of the Hartheim forest and an adjacent grassland site during the HartX experiment. Theor. Appl. Climatol. 53, 49–58 (1996).

    Article  Google Scholar 

  31. 31

    Baldocchi, D. D., Xu, L. K. & Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric. Forest Meteorol. 123, 13–39 (2004).

    Article  Google Scholar 

  32. 32

    von Randow, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78, 5–26 (2004).

    Article  Google Scholar 

  33. 33

    Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article  Google Scholar 

  34. 34

    Wilson, K. B. et al. Energy balance closure at FLUXNET sites. Agric. Forest Meteorol. 113, 223–243 (2002).

    Article  Google Scholar 

  35. 35

    Moderow, U. et al. Available energy and energy balance closure at four coniferous forest sites across Europe. Theor. Appl. Climatol. 98, 397–412 (2009).

    Article  Google Scholar 

  36. 36

    Ibrom, A. et al. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric. Forest Meteorol. 147, 140–156 (2007).

    Article  Google Scholar 

  37. 37

    Foken, T. et al. Some aspects of the energy balance closure problem. Atmos. Chem. Phys. 6, 4395–4402 (2006).

    Article  Google Scholar 

  38. 38

    Gash, J. H. C. & Dolman, A. J. Sonic anemometer (co)sine response and flux measurement I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agric. Forest. Meteorol. 119, 195–207 (2003).

    Article  Google Scholar 

  39. 39

    Lindroth, A., Mölder, M. & Lagergren, F. Heat storage in forest biomass improves energy balance closure. Biogeosciences 7, 301–313 (2010).

    Article  Google Scholar 

  40. 40

    van der Molen, M. K., Gash, J. H. C. & Elbers, J. A. Sonic anemometer (co)sine response and flux measurement II. The effect of introducing an angle of attack dependent calibration. Agric. Forest Meteorol. 122, 95–109 (2004).

    Article  Google Scholar 

  41. 41

    Teuling, A. J. & Seneviratne, S. I. Contrasting spectral changes limit albedo impact on land–atmosphere coupling during the 2003 European heat wave. Geophys. Res. Lett. 35, L03401 (2008).

    Article  Google Scholar 

  42. 42

    Teuling, A. J., Uijlenhoet, R., Hupet, F. & Troch, P. A. Impact of plant water uptake strategy on soil moisture and evapotranspiration dynamics during drydown. Geophys. Res. Lett. 33, L03401 (2006).

    Google Scholar 

  43. 43

    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  44. 44

    Brutsaert, W. & Chen, D. Desorption and the two stages of drying of natural tallgrass prairie. Wat. Resour. Res. 31, 1305–1313 (1995).

    Article  Google Scholar 

  45. 45

    Zeng, X. Global vegetation root distribution for land modeling. J. Hydrometeorol. 2, 525–530 (2001).

    Article  Google Scholar 

  46. 46

    Breuer, L., Eckhardt, K. & Frede, H-G. Plant parameter values for models in temperate climates. Ecol. Model. 169, 237–293 (2003).

    Article  Google Scholar 

  47. 47

    Juang, J-Y. et al. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, L21408 (2007).

    Article  Google Scholar 

  48. 48

    Andersen, O. B., Seneviratne, S. I., Hinderer, J. & Viterbo, P. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys. Res. Lett. 32, L18405 (2005).

    Google Scholar 

  49. 49

    Wilson, K. B. et al. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Wat. Resour. Res. 38, 1294 (2002).

    Google Scholar 

  50. 50

    Seitza, F., Schmidt, M. & Shum, C. K. Signals of extreme weather conditions in Central Europe in GRACE 4-D hydrological mass variations. Earth Planet. Sci. Lett. 268, 165–170 (2008).

    Google Scholar 

Download references


We are grateful to the members of the FLUXNET community ( and in particular the CarboEuropeIP network for their efforts in acquiring the eddy covariance data. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California - Berkeley and University of Virginia. A.J.T. acknowledges financial support from Netherlands Organisation for Scientific Research (NWO) through Rubicon grant 825.07.009, ETH Zurich and the Swiss National Science Foundation through the NFP61 DROUGHT-CH project. We further acknowledge support from the European Commission Project CARBO-Extreme (FP7-ENV-2008-1-226701), the CCES MAIOLICA project and NCCR-Climate programme.

Author information




A.J.T. and S.I.S. provided the framework and conceived the manuscript. A.J.T. carried out all analyses. All authors collaborated in the discussion of the results and writing.

Corresponding authors

Correspondence to Adriaan J. Teuling or Sonia I. Seneviratne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 603 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teuling, A., Seneviratne, S., Stöckli, R. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geosci 3, 722–727 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing