Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pervasive oxygenation along late Archaean ocean margins

Abstract

The photosynthetic production of oxygen in the oceans is thought to have begun by 2.7 billion years ago, several hundred million years before appreciable accumulation of oxygen in the atmosphere. However, the abundance and distribution of dissolved oxygen in the late Archaean oceans is poorly constrained. Here we present geochemical profiles from 2.6- to 2.5-billion-year-old black shales from the Campbellrand–Malmani carbonate platform in South Africa. We find a high abundance of rhenium and a low abundance of molybdenum, which, together with the speciation of sedimentary iron, points to the presence of dissolved oxygen in the bottom waters on the platform slope. The water depth on the slope probably reached several hundred metres, implying the export of O2 below the photic zone. Our data also indicate that the mildly oxygenated surface ocean gave way to an anoxic deep ocean. We therefore suggest that the production of oxygen in the surface ocean was vigorous at this time, but was not sufficient to fully consume the deep-sea reductants. On the basis of our results and observations from the Hamersley basin in Western Australia, we conclude that the productive regions along ocean margins during the late Archaean eon were sites of substantial O2 accumulation, at least 100 million years before the first significant increase in atmospheric O2 concentration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Geological map and cross-section of the Campbellrand–Malmani carbonate platform margin.
Figure 2: Geochemical profiles through core GKP01.
Figure 3: Geochemical profiles through core GKF01.
Figure 4: Late Archaean ocean redox conditions along the Campbellrand–Malmani ocean margin.

References

  1. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  Google Scholar 

  2. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. M. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).

    Article  Google Scholar 

  3. Brocks, J. J., Buick, R., Summons, R. E. & Logan, G. A. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim. Cosmochim. Acta 67, 4321–4335 (2003).

    Article  Google Scholar 

  4. Waldbauer, J. R., Sherman, L. S., Sumner, D. Y. & Summons, R. E. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambr. Res. 169, 28–47 (2009).

    Article  Google Scholar 

  5. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).

    Article  Google Scholar 

  6. Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. 104, 15099–15104 (2007).

    Article  Google Scholar 

  7. Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  8. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  Google Scholar 

  9. Garvin, J. et al. Isotopic evidence for an aerobic nitrogen cycle in the Latest Archean. Science 323, 1045–1048 (2009).

    Article  Google Scholar 

  10. Reinhard, C. et al. A Late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  Google Scholar 

  11. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nature Geosci. 2, 725–729 (2009).

    Article  Google Scholar 

  12. Frei, R., Gaucher, C., Poulton, S. W. & Canfield, D. E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250–253 (2009).

    Article  Google Scholar 

  13. Schröder, S., Lacassie, J. P. & Beukes, N. J. Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Africa). S. Afr. J. Geol. 109, 23–54 (2006).

    Article  Google Scholar 

  14. Knoll, A. H. & Beukes, N. J. Introduction: Initial investigations of a Neoarchean shelf margin-basin transition (Transvaal Supergroup, South Africa). Precambr. Res. 169, 1–14 (2009).

    Article  Google Scholar 

  15. Morris, A. W. Dissolved molybdenum and vanadium in the northeast Atlantic Ocean. Deep-Sea Res. 22, 49–54 (1975).

    Google Scholar 

  16. Collier, R. W. Molybdenum in the Northeast Pacific Ocean. Limnol. Oceanogr. 30, 1351–1354 (1985).

    Article  Google Scholar 

  17. Anbar, A. D., Creaser, R. A., Papanastassiou, D. A. & Wasserburg, G. J. Rhenium in seawater: Confirmation of generally conservative behaviour. Geochim. Cosmochim. Acta 56, 4099–4103 (1992).

    Article  Google Scholar 

  18. Colodner, D. et al. The geochemical cycle of rhenium: A reconnaissance. Earth Planet. Sci. Lett. 117, 205–221 (1993).

    Article  Google Scholar 

  19. Morford, J. L. & Emerson, S. R. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

    Article  Google Scholar 

  20. Sundby, B., Martinez, P. & Gobeil, C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochim. Cosmochim. Acta 68, 2485–2493 (2004).

    Article  Google Scholar 

  21. Yamashita, Y. et al. Comparison of reductive accumulation of Re and Os in seawater-sediment systems. Geochim. Cosmochim. Acta 71, 3458–3475 (2007).

    Article  Google Scholar 

  22. Erickson, B. E. & Helz, G. R. Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 64, 1149–1158 (2000).

    Article  Google Scholar 

  23. Zheng, Y., Anderson, R. F., Van Geen, A. & Kuwabara, J. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta 64, 4165–4178 (2000).

    Article  Google Scholar 

  24. Algeo, T. J. & Lyons, T. W. Mo—total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, PA1016 (2006).

    Article  Google Scholar 

  25. Crusius, J., Calvert, S., Pedersen, T. & Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78 (1996).

    Article  Google Scholar 

  26. Cohen, A. S., Coe, A. L., Bartlett, J. M. & Hawkesworth, C. J. Precise Re–Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth Planet. Sci. Lett. 167, 159–173 (1999).

    Article  Google Scholar 

  27. Scott, C. et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008).

    Article  Google Scholar 

  28. Morford, J. L., Emerson, S. R., Breckel, E. J. & Kim, S. H. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 69, 5021–5032 (2005).

    Article  Google Scholar 

  29. Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    Article  Google Scholar 

  30. Raiswell, R., Newton, R. & Wignall, P. B. An indicator of water-column anoxia: Resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, UK). J. Sedim. Res. 71, 286–294 (2001).

    Article  Google Scholar 

  31. Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  32. Beukes, N. J. Facies relations, depositional environments and diagenesis in a major Early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, southern Africa. Sediment. Geol. 54, 1–46 (1987).

    Article  Google Scholar 

  33. Sumner, D. Y. & Beukes, N. J. Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa. S. Afr. J. Geol. 109, 11–22 (2006).

    Article  Google Scholar 

  34. Beukes, N. J. & Gutzmer, J. in Banded Iron Formation-related High-Grade Iron Ore Vol. 15 (eds Hagemann, S., Rosiere, C., Gutzmer, J. & Beukes, N. J.) 5–47 (Soc. Econ. Geol., Rev. Econ. Geol., 2008).

    Google Scholar 

  35. Altermann, W. & Nelson, D. R. Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal Craton as inferred from precise U–Pb zircon ages from volcaniclastic sediments. Sediment. Geol. 120, 225–256 (1998).

    Article  Google Scholar 

  36. Pickard, A. L. SHRIMP U–Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: Evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambr. Res. 125, 275–315 (2003).

    Article  Google Scholar 

  37. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  Google Scholar 

  38. Guo, Q. et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37, 399–402 (2009).

    Article  Google Scholar 

  39. Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173–177 (2004).

    Article  Google Scholar 

  40. Klein, C. & Beukes, N. J. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 84, 1733–1774 (1989).

    Article  Google Scholar 

  41. Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).

    Article  Google Scholar 

  42. Li, C. et al. A stratified redox model for the Ediacaran ocean. Science 328, 80–83 (2010).

    Article  Google Scholar 

  43. Rooney, A. D., Selby, D., Houzay, J-P. & Renne, P. R. Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni Basin, Mauritania: Implications for basin-wide correlations and Re–Os organic-rich sediments systematics. Earth Planet. Sci. Lett. 289, 486–496 (2010).

    Article  Google Scholar 

  44. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  Google Scholar 

  45. Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    Article  Google Scholar 

  46. Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).

    Article  Google Scholar 

  47. Ono, S. et al. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambr. Res. 169, 58–67 (2009).

    Article  Google Scholar 

  48. Sverjensky, D. A., Lee, N. & Hazen, R. M. Weathering in the Late Archean and perturbations by oxygenic photosynthesis. Eos Trans. AGU (Fall Meeting Suppl.) 90, Abstr. B12A-02 (2009).

  49. de Kock, M. O., Evans, D. A. D. & Beukes, N. J. Validating the existence of Vaalbara in the Neoarchean. Precambr. Res. 174, 145–154 (2009).

    Article  Google Scholar 

  50. Simonson, B. M. et al. Correlating multiple Neoarchean–Paleoproterozoic impact spherule layers between South Africa and Western Australia. Precambr. Res. 169, 100–111 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Kirschvink, J. Grotzinger, A. Knoll and the Agouron Institute for spearheading and funding the Agouron drilling project. This study was financially supported by the NASA Exobiology Program and the NASA Astrobiology Institute. B.K. was financially supported by an Agouron Institute Geobiology Fellowship. The NSF (Geobiology and Low Temperature Geochemistry and Sedimentary Geology and Paleontology programs) supported analytical work at the University of Maryland. The DFG supported measurements by A.J.K. at the University of Maryland while on sabbatical. S.W.P. acknowledges support from a NERC Research Fellowship. T. Algeo provided valuable insights that improved the manuscript. G. Arnold and D. Sumner are thanked for discussions. J. Kirschvink is thanked for access to samples. G. Arnold, I. Hilburn and T. Raub assisted with sample collection and preparation. G. Gordon provided analytical support.

Author information

Authors and Affiliations

Authors

Contributions

The research was planned by B.K., A.D.A., T.W.L. and A.J.K. Analytical protocols and data processing were carried out by B.K., C.T.R., A.J.K. and S.W.P. Manuscript preparation was spearheaded by B.K. with important contributions from all co-authors.

Corresponding author

Correspondence to Brian Kendall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 811 kb)

Supplementary Information

Supplementary Information (XLS 96 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kendall, B., Reinhard, C., Lyons, T. et al. Pervasive oxygenation along late Archaean ocean margins. Nature Geosci 3, 647–652 (2010). https://doi.org/10.1038/ngeo942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing