Abstract
The discovery of slow-slip phenomena has revolutionized our understanding of how faults accommodate relative plate motions. Faults were previously thought to relieve stress either through continuous aseismic sliding, or as earthquakes resulting from instantaneous failure of locked faults. In contrast, slow-slip events proceed so slowly that slip is limited and only low-frequency (or no) seismic waves radiate. We find that slow-slip phenomena are not unique to the depths (tens of kilometres) of subduction zone plate interfaces. They occur on faults in many settings, at numerous scales and owing to various loading processes, including landslides and glaciers. Taken together, the observations indicate that slowly slipping fault surfaces relax most of the accrued stresses through aseismic slip. Aseismic motion can trigger more rapid slip elsewhere on the fault that is sufficiently fast to generate seismic waves. The resulting radiation has characteristics ranging from those indicative of slow but seismic slip, to those typical of earthquakes. The mode of seismic slip depends on the inherent characteristics of the fault, such as the frictional properties. Slow-slip events have previously been classified as a distinct mode of fault slip compared with that seen in earthquakes. We conclude that instead, slip modes span a continuum and are of common occurrence.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A review on slow earthquakes in the Japan Trench
Progress in Earth and Planetary Science Open Access 03 January 2023
-
Integrated rupture mechanics for slow slip events and earthquakes
Nature Communications Open Access 28 November 2022
-
Deep long period seismicity preceding and during the 2021 Fagradalsfjall eruption, Iceland
Bulletin of Volcanology Open Access 04 November 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Brodsky, E. E. & Mori, J. Creep events slip less than ordinary earthquakes. Geophys. Res. Lett. 34, L16309 (2007).
Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679–1681 (2002).
Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003).
Katsumata, A. & Kamaya, N. Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan. Geophys. Res. Lett. 30, 1020 (2003).
Shelly, D. R., Beroza, G. C. & Ide, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).
Obara, K. & Ito, Y. Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism. Earth Planets Space 57, 321–326 (2005).
Ito, Y., Asano, Y. & Obara, K. Very low-frequency earthquakes indicate a transpressional stress regime in the Nankai accretionary prism. Geophys. Res. Lett. 36, L20309 (2009).
Nadeau, R. M. & Dolenc, D. Nonvolcanic tremors deep beneath the San Andreas Fault. Science 307, 389 (2005).
Payero, J. S. et al. Nonvolcanic tremor observed in the Mexican subduction zone. Geophys. Res. Lett. 35, L07305 (2008).
Brown, J. R. et al. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophys. Res. Lett. 36, L19306 (2009).
Shelly, D. R, Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305–307 (2007).
Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).
Ito, Y., Obara, K., Matsuzawa, T. & Maeda, T. Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition. J. Geophys. Res. 114, B00A13 (2009).
Linde, A. T., Gladwin, M., Johnston, M., Gwyther, R. & Bilham, R. A slow earthquake sequence on the San Andreas Fault. Nature 383, 65–68 (1996).
Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 26, 3237–3240 (1999).
Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).
Lowry, A. R., Larson, K. M., Kostoglodov, V. & Bilham, R. Transient fault slip in Guerrero, southern Mexico. Geophys. Res. Lett. 28, 3753–3756 (2001).
Agnew, D. Instrumental, theoretical, temporal, and statistical challenges in the search for transient deformations. Eos 90 (suppl.), G32A-01 (2009).
Beroza, G. & Jordan, T. Searching for slow and silent earthquakes using free oscillations. J. Geophys. Res. 95, 2485–2510 (1990).
Kanamori, H. & Anderson, D. L. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65, 1073–1095 (1975).
Shearer, P. M. Global seismic event detection using a matched filter on long-period seismograms. J. Geophys. Res. 99, 13713–13725 (1994).
Kanamori, H. & Hauksson, E. A slow earthquake in the Santa Maria Basin, California. Bull. Seismol. Soc. Am. 82, 2087–2096 (1992).
Kanamori, H. & Kikuchi, M. The 1992 Nicaragua Earthquake - a slow tsunami earthquake associated with subducted sediments. Nature 361, 714–716 (1993).
Ekström, G., Nettles, M. & Abers, G. A. Glacial earthquakes. Science 302, 622–624 (2003).
Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, L23602 (2004).
Shelly, D. R., Beroza, G. C., Zhang, H., Thurber, C. H. & Ide, S. High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. J. Geophys. Res. 111, B06311 (2006).
Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R. & Allen, R. M. Slab morphology in the Cascadia forearc and its relation to episodic tremor and slip. J. Geophys. Res. 115, B00A16 (2010).
LaRocca, M. et al. Cascadia tremor located near the plate interface constrained by S minus P wave times. Science 323, 620–623 (2009).
Shelly, D. R. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas Fault. Nature 463, 648–653 (2010).
Ide, S., Shelly, D. R. & Beroza, G. C. Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophys. Res. Lett. 34, L03308 (2007).
Kao, H., Shan, S-J., Dragert, H. & Rogers, G. Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007. J. Geophys. Res. 114, B00A12 (2009).
Kao, H. et al. A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature 436, 841–844 (2005).
Miyazaki, S., Segall, P., McGuire, J. J., Kato, T. & Hatanaka, Y. Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J. Geophys. Res. 111, B03409 (2006).
Miller, M. M., Melbourne, T., Johnson, D. J. & Sumner, W. Q. Periodic slow earthquakes from the Cascadia subduction zone. Science 295, 2423 (2002).
Brudzinski, M. R. & Allen, R. M. Segmentation in episodic tremor and slip all along Cascadia. Geology 35, 907–910 (2007).
Peterson, C. L. & Christensen, D. H. Possible relationship between nonvolcanic tremor and the 1998–2001 slow-slip event, south central Alaska. J. Geophys. Res. 114, B06302 (2009).
Douglas, A., Beavan, J., Wallace, L. & Townend, J. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32, 1–4 (2005).
Aguiar, A. C., Melbourne, T. I. & Scrivner, C. W. Moment release rate of Cascadia tremor constrained by GPS. J. Geophys. Res. 114, B00A05 (2009).
Fukuda, M., Sagiya, T. & Asai, Y. A causal relationship between the slow slip event and deep low frequency tremor indicated by strain data recorded at Shingu borehole station. Eos 89 (suppl.), U33A-0033 (2008).
Obara, K. Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation. J. Geophys. Res. 10.1029/2008JB006048 (2010).
Delahaye, E. J., Townend, J., Reyners, M. E. & Rogers, G. Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand. Earth Planet. Sci. Lett. 277, 21–28 (2009).
Kimura, H., Kasahara, K. & Takeda, T. Subduction process of the Philippine Sea Plate off the Kanto district, central Japan, as revealed by plate structure and repeating earthquakes. Tectonophysics 472, 18–27 (2009).
Segall, P., Desmarais, E., Shelly, D., Miklius, A. & Cervelli, P. Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature 442, 71–74 (2006).
Peng, Z., Vidale, J. E., Wech, A. G., Nadeau, R. M. & Creager, K. C. Remote triggering of tremor along the San Andreas Fault in central California. J. Geophys. Res. 114, B00A06 (2009).
Smith, E. F. & Gomberg, J. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California. J. Geophys. Res. 114, B00A14 (2009).
Wech, A. G., Creager, K. C. & Melbourne, T. I. Seismic and geodetic constraints on Cascadia slow slip. J. Geophys. Res. 114, B10316 (2009).
Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at circum-pacific subduction zones. Rev. Geophys. 45, RG3004 (2007).
Gomberg, J., Rubinstein, J. L., Peng, Z., Creager, K. C. & Vidale, J. E. Widespread triggering of non-volcanic tremor in California. Science 319, 173 (2008).
Miyazawa, M. & Brodsky, E. E. Deep low-frequency tremor that correlates with the passing surface waves. J. Geophys. Res. 113, B01307 (2008).
Rubinstein, J. L. et al. Non-volcanic tremor driven by large transient shear stresses. Nature 448, 579–582 (2007).
Peng, Z. & Chao, K. Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 Mw7.8 Kunlun earthquake. Geophys. J. Int. 175, 825–829 (2008).
Nadeau, R. M. & Guilhem, A. Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes. Science 325, 191–193 (2009).
Rubinstein, J. L., La Rocca, M., Vidale, J. E., Creager, K. C. & Wech, A. G. Tidal modulation of nonvolcanic tremor. Science 319, 186–189 (2008).
Nakata, R., Suda, N. & Tsuruoka, H. Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geosci. 1, 676–678 (2008).
Lambert, A., Kao, H., Rogers, G. & Courtier, N. Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone. J. Geophys. Res. 114, B00A08 (2009).
Thomas, A. M., Nadeau, R. M. & Bürgmann, R. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault. Nature 462, 1048–1051 (2009).
Liu, C-C., Linde, A. T. & Sacks, I. S. Slow earthquakes triggered by typhoons. Nature 459, 833–836 (2009).
Shen, Z. K., Wang, Q., Bürgmann, R. & Wan, Y. Pole-tide modulation of slow slip events at circum-Pacific subduction zones. Bull. Seismol. Soc. Am. 95, 2009–2015 (2005).
Lowry, A. R. Resonant slow fault slip in subduction zones forced by climatic load stress. Nature 442, 802–805 (2006).
Matsubara, M., Obara, K. & Kasahara, K. High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan. Tectonophysics 472, 6–17 (2009).
Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).
Song, T. A. et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324, 502–506 (2009).
Peacock, S. M. Thermal and metamorphic environment of subduction-zone episodic tremor and slip. J. Geophys. Res. 114, B00A07 (2009).
Ozacar, A. A. & Zandt, G. Crustal structure and seismic anisotropy near the San Andreas Fault at Parkfield, California. Geophys. J. Int. 178, 1098–1104 (2009).
Scholz, C. H. The Mechanics of Earthquakes and Faulting 2nd edn (Cambridge Univ. Press, 2003).
Kanamori, H. Earthquake physics and real-time seismology. Nature 451, 271–273 (2008).
Shibazaki, B. & Iio, Y. On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophys. Res. Lett. 30, 1489 (2003).
Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112, B09404 (2007).
Liu, Y. & Rice, J. R. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. J. Geophys. Res. 114, B09407 (2009).
Rubin, A. M. Episodic slow slip events and rate-and-state friction. J. Geophys. Res. 113, B11414 (2008).
Segall, P. & Bradley, A. M. Numerical models of slow slip and dynamic rupture including dilatant stabilization and thermal pressurization. Eos 90 (suppl.), T22B-08 (2009).
Roland, E. & McGuire, J. J. Earthquake swarms on transform faults. Geophys. J. Int. 178, 1677–1690 (2009).
Hiramatsu, Y., Watanabe, T. & Obara, K. Deep low-frequency tremors as a proxy for slip monitoring at plate interface. Geophys. Res. Lett. 35, L13304 (2008).
Aki, K. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, 2, Estimation of earthquake moment, released energy, and stress-strain drop from G wave spectrum. Bull. Earthq. Res. I. Tokyo 44, 73–88 (1966).
Kao, H., Wang, K., Dragert, H., Rogers, G. C. & Kao, J. Y. Large contrast between the moment magnitude of tremor and the moment magnitude of slip in ETS events. Eos 90 (suppl.), T22B-04 (2009).
Chapman, J. S. & Melbourne, T. I. Future Cascadia megathrust rupture delineated by episodic tremor and slip. Geophys. Res. Lett. 36, L22301 (2009).
Ide, S., Imanishi, K., Yoshida, Y., Beroza, G. C. & Shelly, D. R. Bridging the gap between seismically and geodetically detected slow earthquakes. Geophys. Res. Lett. 35, L10305 (2008).
Ohta, Y., Freymueller, J. T., Hreinsdóttir, S. & Suito, H. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet. Sci. Lett. 247, 108–116 (2006).
Obara, K. & Hirose, H. Non-volcanic deep low-frequency tremors accompanying slow slips in southwest Japan subduction zone. Tectonophysics 417, 33–51 (2006).
Obara, K., Tanaka, S. & Maeda, T. Reevaluation of nonvolcanic tremor activity based on the hybrid method. Eos 90 (suppl.), T11C-1835 (2009).
Peacock, S. M. & Wang, K. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan. Science 286, 937–939 (1999).
Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Pl. Sc. 33, 335–367 (2005).
Perfettini, H. & Avouac, J. P. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. 109, B02304 (2004).
Hsu, Y. J. et al. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312, 1921–1926 (2006).
Savage, J. C. & Yu, S. B. Postearthquake relaxation and aftershock accumulation linearly related after 2003 Chengkung (M6.5, Taiwan) and 2004 Parkfield (M6.0, California) earthquakes. Bull. Seismol. Soc. Am. 97, 1632–1645 (2007).
Barbot, S., Fialko, Y. & Bock, Y. Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J. Geophys. Res. 114, B07405 (2009).
Marone, C. J. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Pl. Sc. 26, 643–696 (1998).
Peng, Z. & Zhao, P. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geosci. 2, 877–881 (2009).
Vidale, J. E. & Shearer, P. M. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. 111, B05312 (2006).
Lohman, R. B. & McGuire, J. J. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. 112, B04405 (2007).
Nadeau, R. M., Foxall, W. & McEvilly, T. V. Clustering and periodic recurrence microearthquakes on the San Andreas fault at Parkfield, California. Science 267, 503–507 (1995).
Wei, M., Sandwell, D. & Fialko, Y. A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault, southern California. J. Geophys. Res. 114, B07402 (2009).
Wiens, D. A., Anandakrishnan, S., Winberry, J. P. & King, M. A. Simultaneous teleseismic and geodetic observations of the stick–slip motion of an Antarctic ice stream. Nature 453, 770–775 (2008).
Schaeffer, D. G. & Iverson, R. M. Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM J. Appl. Math. 69, 769–786 (2008).
Schulz, W. H., Kean, J. W. & Wang, G. Landslide movement in southwest Colorado triggered by atmospheric tides. Nature Geosci. 2, 863–866 (2009).
Ide, S., Beroza, G. C., Shelly, D. R. & Uchide, T. A scaling law for slow earthquakes. Nature 447, 76–79 (2007).
Roeloffs, E. A. Evidence for aseismic deformation rate changes prior to earthquakes. Annu. Rev. Earth Pl. Sc. 34, 591–627 (2006).
McCausland, W. A., Roeloffs, E. & Silver, P. New insights into Cascadia slow slip events using Plate Boundary Observatory borehole strainmeters. Eos 89 (suppl.), G21B-0691 (2008).
Perfettini, H., Avouac, J. P. & Ruegg, J. C. Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: Implications for the mechanics of the earthquake cycle along the subduction zones. J. Geophys. Res. 109, B09404 (2005).
Rubinstein, J. L., Shelly, D. R. & Ellsworth, W. L. in Non-volcanic Tremor: A Window into the Roots of Fault Zones, in New Frontiers in Integrated Solid Earth Sciences (eds Cloetingh, S. & Negendank, J.) 287–314 (Springer, 2010).
Acknowledgements
We thank E. Brodsky, R. McCaffrey, S. Bilek and many others for sharing their measurements of moments and durations of regular earthquakes and slow-slip events. The manuscript benefits from comments by D. Shelly, J. McGuire, K. Obara, T. Melbourne and P. Segall. This work is supported by National Science Foundation (EAR-0809834 and EAR-0956051) and the US Geological Survey.
Author information
Authors and Affiliations
Contributions
Both authors have contributed equally to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 340 kb)
Rights and permissions
About this article
Cite this article
Peng, Z., Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci 3, 599–607 (2010). https://doi.org/10.1038/ngeo940
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo940
This article is cited by
-
A review on slow earthquakes in the Japan Trench
Progress in Earth and Planetary Science (2023)
-
Thermal Anomaly, Co-Seismic Deformation and Seismic Source Parameters Estimation of June 21 2022, Afghanistan Earthquake Employing InSAR Observations
Pure and Applied Geophysics (2023)
-
Tectonic geomorphology and seismic hazard of the east boundary thrust in northern segment of the Sunda–Andaman subduction zone
Natural Hazards (2023)
-
A strength inversion origin for non-volcanic tremor
Nature Communications (2022)
-
InSAR data reveal that the largest hydraulic fracturing-induced earthquake in Canada, to date, is a slow-slip event
Scientific Reports (2022)