Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An integrated perspective of the continuum between earthquakes and slow-slip phenomena

Abstract

The discovery of slow-slip phenomena has revolutionized our understanding of how faults accommodate relative plate motions. Faults were previously thought to relieve stress either through continuous aseismic sliding, or as earthquakes resulting from instantaneous failure of locked faults. In contrast, slow-slip events proceed so slowly that slip is limited and only low-frequency (or no) seismic waves radiate. We find that slow-slip phenomena are not unique to the depths (tens of kilometres) of subduction zone plate interfaces. They occur on faults in many settings, at numerous scales and owing to various loading processes, including landslides and glaciers. Taken together, the observations indicate that slowly slipping fault surfaces relax most of the accrued stresses through aseismic slip. Aseismic motion can trigger more rapid slip elsewhere on the fault that is sufficiently fast to generate seismic waves. The resulting radiation has characteristics ranging from those indicative of slow but seismic slip, to those typical of earthquakes. The mode of seismic slip depends on the inherent characteristics of the fault, such as the frictional properties. Slow-slip events have previously been classified as a distinct mode of fault slip compared with that seen in earthquakes. We conclude that instead, slip modes span a continuum and are of common occurrence.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustrative examples of slow-slip signals.
Figure 2: Schematic cross-section of the Cascadia subduction zone.
Figure 3: Location map of seismically and geodetically observed slow-slip phenomena.
Figure 4: Examples of triggering seismic waves and triggered tremor.
Figure 5: Seismic moment versus source duration for a variety of fault-slip observations.

References

  1. Brodsky, E. E. & Mori, J. Creep events slip less than ordinary earthquakes. Geophys. Res. Lett. 34, L16309 (2007).

    Google Scholar 

  2. Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679–1681 (2002).

    Article  Google Scholar 

  3. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003).

    Google Scholar 

  4. Katsumata, A. & Kamaya, N. Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan. Geophys. Res. Lett. 30, 1020 (2003).

    Google Scholar 

  5. Shelly, D. R., Beroza, G. C. & Ide, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Google Scholar 

  6. Obara, K. & Ito, Y. Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: A dynamic deformation process in the large accretionary prism. Earth Planets Space 57, 321–326 (2005).

    Google Scholar 

  7. Ito, Y., Asano, Y. & Obara, K. Very low-frequency earthquakes indicate a transpressional stress regime in the Nankai accretionary prism. Geophys. Res. Lett. 36, L20309 (2009).

    Google Scholar 

  8. Nadeau, R. M. & Dolenc, D. Nonvolcanic tremors deep beneath the San Andreas Fault. Science 307, 389 (2005).

    Google Scholar 

  9. Payero, J. S. et al. Nonvolcanic tremor observed in the Mexican subduction zone. Geophys. Res. Lett. 35, L07305 (2008).

    Google Scholar 

  10. Brown, J. R. et al. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophys. Res. Lett. 36, L19306 (2009).

    Google Scholar 

  11. Shelly, D. R, Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305–307 (2007).

    Google Scholar 

  12. Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).

    Google Scholar 

  13. Ito, Y., Obara, K., Matsuzawa, T. & Maeda, T. Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition. J. Geophys. Res. 114, B00A13 (2009).

    Google Scholar 

  14. Linde, A. T., Gladwin, M., Johnston, M., Gwyther, R. & Bilham, R. A slow earthquake sequence on the San Andreas Fault. Nature 383, 65–68 (1996).

    Google Scholar 

  15. Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 26, 3237–3240 (1999).

    Google Scholar 

  16. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Google Scholar 

  17. Lowry, A. R., Larson, K. M., Kostoglodov, V. & Bilham, R. Transient fault slip in Guerrero, southern Mexico. Geophys. Res. Lett. 28, 3753–3756 (2001).

    Google Scholar 

  18. Agnew, D. Instrumental, theoretical, temporal, and statistical challenges in the search for transient deformations. Eos 90 (suppl.), G32A-01 (2009).

    Google Scholar 

  19. Beroza, G. & Jordan, T. Searching for slow and silent earthquakes using free oscillations. J. Geophys. Res. 95, 2485–2510 (1990).

    Google Scholar 

  20. Kanamori, H. & Anderson, D. L. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65, 1073–1095 (1975).

    Google Scholar 

  21. Shearer, P. M. Global seismic event detection using a matched filter on long-period seismograms. J. Geophys. Res. 99, 13713–13725 (1994).

    Google Scholar 

  22. Kanamori, H. & Hauksson, E. A slow earthquake in the Santa Maria Basin, California. Bull. Seismol. Soc. Am. 82, 2087–2096 (1992).

    Google Scholar 

  23. Kanamori, H. & Kikuchi, M. The 1992 Nicaragua Earthquake - a slow tsunami earthquake associated with subducted sediments. Nature 361, 714–716 (1993).

    Google Scholar 

  24. Ekström, G., Nettles, M. & Abers, G. A. Glacial earthquakes. Science 302, 622–624 (2003).

    Google Scholar 

  25. Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, L23602 (2004).

    Google Scholar 

  26. Shelly, D. R., Beroza, G. C., Zhang, H., Thurber, C. H. & Ide, S. High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. J. Geophys. Res. 111, B06311 (2006).

    Google Scholar 

  27. Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R. & Allen, R. M. Slab morphology in the Cascadia forearc and its relation to episodic tremor and slip. J. Geophys. Res. 115, B00A16 (2010).

    Google Scholar 

  28. LaRocca, M. et al. Cascadia tremor located near the plate interface constrained by S minus P wave times. Science 323, 620–623 (2009).

    Google Scholar 

  29. Shelly, D. R. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas Fault. Nature 463, 648–653 (2010).

    Google Scholar 

  30. Ide, S., Shelly, D. R. & Beroza, G. C. Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophys. Res. Lett. 34, L03308 (2007).

    Google Scholar 

  31. Kao, H., Shan, S-J., Dragert, H. & Rogers, G. Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007. J. Geophys. Res. 114, B00A12 (2009).

    Google Scholar 

  32. Kao, H. et al. A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature 436, 841–844 (2005).

    Google Scholar 

  33. Miyazaki, S., Segall, P., McGuire, J. J., Kato, T. & Hatanaka, Y. Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J. Geophys. Res. 111, B03409 (2006).

    Google Scholar 

  34. Miller, M. M., Melbourne, T., Johnson, D. J. & Sumner, W. Q. Periodic slow earthquakes from the Cascadia subduction zone. Science 295, 2423 (2002).

    Google Scholar 

  35. Brudzinski, M. R. & Allen, R. M. Segmentation in episodic tremor and slip all along Cascadia. Geology 35, 907–910 (2007).

    Google Scholar 

  36. Peterson, C. L. & Christensen, D. H. Possible relationship between nonvolcanic tremor and the 1998–2001 slow-slip event, south central Alaska. J. Geophys. Res. 114, B06302 (2009).

    Google Scholar 

  37. Douglas, A., Beavan, J., Wallace, L. & Townend, J. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32, 1–4 (2005).

    Google Scholar 

  38. Aguiar, A. C., Melbourne, T. I. & Scrivner, C. W. Moment release rate of Cascadia tremor constrained by GPS. J. Geophys. Res. 114, B00A05 (2009).

    Google Scholar 

  39. Fukuda, M., Sagiya, T. & Asai, Y. A causal relationship between the slow slip event and deep low frequency tremor indicated by strain data recorded at Shingu borehole station. Eos 89 (suppl.), U33A-0033 (2008).

    Google Scholar 

  40. Obara, K. Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation. J. Geophys. Res. 10.1029/2008JB006048 (2010).

  41. Delahaye, E. J., Townend, J., Reyners, M. E. & Rogers, G. Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand. Earth Planet. Sci. Lett. 277, 21–28 (2009).

    Google Scholar 

  42. Kimura, H., Kasahara, K. & Takeda, T. Subduction process of the Philippine Sea Plate off the Kanto district, central Japan, as revealed by plate structure and repeating earthquakes. Tectonophysics 472, 18–27 (2009).

    Google Scholar 

  43. Segall, P., Desmarais, E., Shelly, D., Miklius, A. & Cervelli, P. Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature 442, 71–74 (2006).

    Google Scholar 

  44. Peng, Z., Vidale, J. E., Wech, A. G., Nadeau, R. M. & Creager, K. C. Remote triggering of tremor along the San Andreas Fault in central California. J. Geophys. Res. 114, B00A06 (2009).

    Google Scholar 

  45. Smith, E. F. & Gomberg, J. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California. J. Geophys. Res. 114, B00A14 (2009).

    Google Scholar 

  46. Wech, A. G., Creager, K. C. & Melbourne, T. I. Seismic and geodetic constraints on Cascadia slow slip. J. Geophys. Res. 114, B10316 (2009).

    Google Scholar 

  47. Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at circum-pacific subduction zones. Rev. Geophys. 45, RG3004 (2007).

    Google Scholar 

  48. Gomberg, J., Rubinstein, J. L., Peng, Z., Creager, K. C. & Vidale, J. E. Widespread triggering of non-volcanic tremor in California. Science 319, 173 (2008).

    Google Scholar 

  49. Miyazawa, M. & Brodsky, E. E. Deep low-frequency tremor that correlates with the passing surface waves. J. Geophys. Res. 113, B01307 (2008).

    Google Scholar 

  50. Rubinstein, J. L. et al. Non-volcanic tremor driven by large transient shear stresses. Nature 448, 579–582 (2007).

    Google Scholar 

  51. Peng, Z. & Chao, K. Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 Mw7.8 Kunlun earthquake. Geophys. J. Int. 175, 825–829 (2008).

    Google Scholar 

  52. Nadeau, R. M. & Guilhem, A. Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes. Science 325, 191–193 (2009).

    Google Scholar 

  53. Rubinstein, J. L., La Rocca, M., Vidale, J. E., Creager, K. C. & Wech, A. G. Tidal modulation of nonvolcanic tremor. Science 319, 186–189 (2008).

    Google Scholar 

  54. Nakata, R., Suda, N. & Tsuruoka, H. Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geosci. 1, 676–678 (2008).

    Google Scholar 

  55. Lambert, A., Kao, H., Rogers, G. & Courtier, N. Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone. J. Geophys. Res. 114, B00A08 (2009).

    Google Scholar 

  56. Thomas, A. M., Nadeau, R. M. & Bürgmann, R. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault. Nature 462, 1048–1051 (2009).

    Google Scholar 

  57. Liu, C-C., Linde, A. T. & Sacks, I. S. Slow earthquakes triggered by typhoons. Nature 459, 833–836 (2009).

    Google Scholar 

  58. Shen, Z. K., Wang, Q., Bürgmann, R. & Wan, Y. Pole-tide modulation of slow slip events at circum-Pacific subduction zones. Bull. Seismol. Soc. Am. 95, 2009–2015 (2005).

    Google Scholar 

  59. Lowry, A. R. Resonant slow fault slip in subduction zones forced by climatic load stress. Nature 442, 802–805 (2006).

    Google Scholar 

  60. Matsubara, M., Obara, K. & Kasahara, K. High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan. Tectonophysics 472, 6–17 (2009).

    Google Scholar 

  61. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Google Scholar 

  62. Song, T. A. et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324, 502–506 (2009).

    Google Scholar 

  63. Peacock, S. M. Thermal and metamorphic environment of subduction-zone episodic tremor and slip. J. Geophys. Res. 114, B00A07 (2009).

    Google Scholar 

  64. Ozacar, A. A. & Zandt, G. Crustal structure and seismic anisotropy near the San Andreas Fault at Parkfield, California. Geophys. J. Int. 178, 1098–1104 (2009).

    Google Scholar 

  65. Scholz, C. H. The Mechanics of Earthquakes and Faulting 2nd edn (Cambridge Univ. Press, 2003).

    Google Scholar 

  66. Kanamori, H. Earthquake physics and real-time seismology. Nature 451, 271–273 (2008).

    Google Scholar 

  67. Shibazaki, B. & Iio, Y. On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophys. Res. Lett. 30, 1489 (2003).

    Google Scholar 

  68. Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112, B09404 (2007).

    Google Scholar 

  69. Liu, Y. & Rice, J. R. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. J. Geophys. Res. 114, B09407 (2009).

    Google Scholar 

  70. Rubin, A. M. Episodic slow slip events and rate-and-state friction. J. Geophys. Res. 113, B11414 (2008).

    Google Scholar 

  71. Segall, P. & Bradley, A. M. Numerical models of slow slip and dynamic rupture including dilatant stabilization and thermal pressurization. Eos 90 (suppl.), T22B-08 (2009).

    Google Scholar 

  72. Roland, E. & McGuire, J. J. Earthquake swarms on transform faults. Geophys. J. Int. 178, 1677–1690 (2009).

    Google Scholar 

  73. Hiramatsu, Y., Watanabe, T. & Obara, K. Deep low-frequency tremors as a proxy for slip monitoring at plate interface. Geophys. Res. Lett. 35, L13304 (2008).

    Google Scholar 

  74. Aki, K. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, 2, Estimation of earthquake moment, released energy, and stress-strain drop from G wave spectrum. Bull. Earthq. Res. I. Tokyo 44, 73–88 (1966).

    Google Scholar 

  75. Kao, H., Wang, K., Dragert, H., Rogers, G. C. & Kao, J. Y. Large contrast between the moment magnitude of tremor and the moment magnitude of slip in ETS events. Eos 90 (suppl.), T22B-04 (2009).

    Google Scholar 

  76. Chapman, J. S. & Melbourne, T. I. Future Cascadia megathrust rupture delineated by episodic tremor and slip. Geophys. Res. Lett. 36, L22301 (2009).

    Google Scholar 

  77. Ide, S., Imanishi, K., Yoshida, Y., Beroza, G. C. & Shelly, D. R. Bridging the gap between seismically and geodetically detected slow earthquakes. Geophys. Res. Lett. 35, L10305 (2008).

    Google Scholar 

  78. Ohta, Y., Freymueller, J. T., Hreinsdóttir, S. & Suito, H. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet. Sci. Lett. 247, 108–116 (2006).

    Google Scholar 

  79. Obara, K. & Hirose, H. Non-volcanic deep low-frequency tremors accompanying slow slips in southwest Japan subduction zone. Tectonophysics 417, 33–51 (2006).

    Google Scholar 

  80. Obara, K., Tanaka, S. & Maeda, T. Reevaluation of nonvolcanic tremor activity based on the hybrid method. Eos 90 (suppl.), T11C-1835 (2009).

    Google Scholar 

  81. Peacock, S. M. & Wang, K. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan. Science 286, 937–939 (1999).

    Google Scholar 

  82. Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Pl. Sc. 33, 335–367 (2005).

    Google Scholar 

  83. Perfettini, H. & Avouac, J. P. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. 109, B02304 (2004).

    Google Scholar 

  84. Hsu, Y. J. et al. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312, 1921–1926 (2006).

    Google Scholar 

  85. Savage, J. C. & Yu, S. B. Postearthquake relaxation and aftershock accumulation linearly related after 2003 Chengkung (M6.5, Taiwan) and 2004 Parkfield (M6.0, California) earthquakes. Bull. Seismol. Soc. Am. 97, 1632–1645 (2007).

    Google Scholar 

  86. Barbot, S., Fialko, Y. & Bock, Y. Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J. Geophys. Res. 114, B07405 (2009).

    Google Scholar 

  87. Marone, C. J. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Pl. Sc. 26, 643–696 (1998).

    Google Scholar 

  88. Peng, Z. & Zhao, P. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geosci. 2, 877–881 (2009).

    Google Scholar 

  89. Vidale, J. E. & Shearer, P. M. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. 111, B05312 (2006).

    Google Scholar 

  90. Lohman, R. B. & McGuire, J. J. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. 112, B04405 (2007).

    Google Scholar 

  91. Nadeau, R. M., Foxall, W. & McEvilly, T. V. Clustering and periodic recurrence microearthquakes on the San Andreas fault at Parkfield, California. Science 267, 503–507 (1995).

    Google Scholar 

  92. Wei, M., Sandwell, D. & Fialko, Y. A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault, southern California. J. Geophys. Res. 114, B07402 (2009).

    Google Scholar 

  93. Wiens, D. A., Anandakrishnan, S., Winberry, J. P. & King, M. A. Simultaneous teleseismic and geodetic observations of the stick–slip motion of an Antarctic ice stream. Nature 453, 770–775 (2008).

    Google Scholar 

  94. Schaeffer, D. G. & Iverson, R. M. Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM J. Appl. Math. 69, 769–786 (2008).

    Google Scholar 

  95. Schulz, W. H., Kean, J. W. & Wang, G. Landslide movement in southwest Colorado triggered by atmospheric tides. Nature Geosci. 2, 863–866 (2009).

    Google Scholar 

  96. Ide, S., Beroza, G. C., Shelly, D. R. & Uchide, T. A scaling law for slow earthquakes. Nature 447, 76–79 (2007).

    Google Scholar 

  97. Roeloffs, E. A. Evidence for aseismic deformation rate changes prior to earthquakes. Annu. Rev. Earth Pl. Sc. 34, 591–627 (2006).

    Google Scholar 

  98. McCausland, W. A., Roeloffs, E. & Silver, P. New insights into Cascadia slow slip events using Plate Boundary Observatory borehole strainmeters. Eos 89 (suppl.), G21B-0691 (2008).

    Google Scholar 

  99. Perfettini, H., Avouac, J. P. & Ruegg, J. C. Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: Implications for the mechanics of the earthquake cycle along the subduction zones. J. Geophys. Res. 109, B09404 (2005).

    Google Scholar 

  100. Rubinstein, J. L., Shelly, D. R. & Ellsworth, W. L. in Non-volcanic Tremor: A Window into the Roots of Fault Zones, in New Frontiers in Integrated Solid Earth Sciences (eds Cloetingh, S. & Negendank, J.) 287–314 (Springer, 2010).

    Google Scholar 

Download references

Acknowledgements

We thank E. Brodsky, R. McCaffrey, S. Bilek and many others for sharing their measurements of moments and durations of regular earthquakes and slow-slip events. The manuscript benefits from comments by D. Shelly, J. McGuire, K. Obara, T. Melbourne and P. Segall. This work is supported by National Science Foundation (EAR-0809834 and EAR-0956051) and the US Geological Survey.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed equally to the manuscript.

Corresponding author

Correspondence to Zhigang Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 340 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, Z., Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci 3, 599–607 (2010). https://doi.org/10.1038/ngeo940

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing