Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible mantle origin of olivine around lunar impact basins detected by SELENE

Abstract

The composition, structure and evolution of the Moon’s mantle is poorly constrained. The mineral olivine, one of the main constituents of Earth’s mantle, has been identified by Earth-based telescopic observations at two craters on the near side of the Moon, Aristarchus and Copernicus1,2,3. Global reflectance spectra in five discrete spectral bands produced by the spacecraft Clementine4,5,6 suggested several possible olivine-bearing sites, but one of the candidate occurrences of olivine was later re-classified, on the basis of continuous reflectance spectra over the entire 1 μm band, as a mixture of plagioclase and pyroxene7. Here we present a global survey of the lunar surface using the Spectral Profiler onboard the lunar explorer SELENE/Kaguya7,8. We found many exposures of olivine on the Moon, located in concentric regions around the South Pole-Aitken, Imbrium and Moscoviense impact basins where the crust is relatively thin. We propose that these exposures of olivine can be attributed either to an excavation of the lunar mantle at the time of the impacts that formed the basins3, or to magnesium-rich pluton in the Moon’s lower crust. On the basis of radiative transfer modelling4,8,9,10, we suggest that at least some of the olivine detected near impact basins originates from upper mantle of the Moon.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global distribution of olivine-rich points on the Moon.
Figure 2: Local distribution of olivine-rich sites around various basins or maria.
Figure 3: Colour-composite image maps of olivine-rich sites D1 and E1 taken by the MI.

Similar content being viewed by others

References

  1. Pieters, C. M. Conspicuous crater central peak: Lunar mountain of unique composition. Science 215, 59–61 (1982).

    Article  Google Scholar 

  2. Lucey, P. G., Hawke, B. R., McCord, T. B., Pieters, C. M. & Head, J. W. A compositional study of the Aristarchus region of the Moon using near-infrared reflectance spectroscopy. J. Geophys. Res. 91, D344–D354 (1986).

    Article  Google Scholar 

  3. Pinet, P. C., Chevrel, S. D. & Martin, P. Copernicus: A regional probe of the lunar interior. Science 260, 797–801 (1993).

    Article  Google Scholar 

  4. Lucey, P. G. Mineral maps of the Moon. Geophys. Res. Lett. 31, L08701 (2004).

    Article  Google Scholar 

  5. Tompkins, S. & Pieters, C. M. Mineralogy of the lunar crust: Results from Clementine. Meteorit. Planet. Sci. 34, 25–41 (1999).

    Article  Google Scholar 

  6. Pieters, C. M., Head, J. W. III, Gaddis, L., Jolliff, B. & Duke, M. Rock types of South Pole-Aitken basin and extent of basaltic volcanism. J. Geophys. Res. 106, 28001–28022 (2001).

    Article  Google Scholar 

  7. Matsunaga, T. et al. Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler. Geophys. Res. Lett. 35, L23201 (2008).

    Article  Google Scholar 

  8. Nakamura, R. et al. Ultramafic impact melt sheet beneath the South Pole-Aitken basin on the Moon. Geophys. Res. Lett. 36, L22202 (2009).

    Article  Google Scholar 

  9. Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. E106, 10039–10073 (2001).

    Article  Google Scholar 

  10. Cahill, J. T. S., Lucey, P. G. & Wieczorek, M. A. Compositional variations of the lunar crust: Results from radiative transfer modelling of central peak spectra. J. Geophys. Res. E114, E09001 (2009).

    Google Scholar 

  11. Snyder, G. A., Lawrence, T. A. & Clive, N. R. A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article  Google Scholar 

  12. Wieczorek, M. A. et al. in New Views of the Moon vol. 60 (eds Jolliff, B. L. et al.) Ch. 3, 221–364 (The Mineralogical Society of America, 2006).

    Book  Google Scholar 

  13. Ishihara, Y. et al. Crustal thickness of the Moon: Implications for farside basin structures. Geophys. Res. Lett. 36, L19202 (2009).

    Article  Google Scholar 

  14. Ohtake, M. et al. The global distribution of pure anorthosite on the Moon. Nature 461, 236–240 (2009).

    Article  Google Scholar 

  15. Haruyama, J. et al. Global lunar-surface mapping experiment by the lunar imager/spectrometer on SELENE. Earth Planet. Space 60, 243–256 (2008).

    Article  Google Scholar 

  16. Jolliff, B. L., Gillis, J. J, Haskin, L. A., Korotev, R. D. & Wieczorek, M. A. Major lunar crustal terranes: Surface expressions and crust–mantle origins. J. Geophys. Res. E105, 4197–4216 (2000).

    Article  Google Scholar 

  17. Melosh, H. J. Impact Cratering (Oxford University Press, 1989).

    Google Scholar 

  18. Grieve, R. A. F., Stöffler, D. & Deutsch, A. The Sudbury structure—controversial or misunderstood? J. Geophys. Res. 96, 22753–22764 (1991).

    Article  Google Scholar 

  19. Croft, S. K. Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation. Proc. Lunar Planet. Sci. Conf. 11, 2347–2378 (1980).

    Google Scholar 

  20. Pieters, C. M. & Wilhelms, D. E. Origin of olivine at Copernicus. J. Geophys. Res. 90, C415–C420 (1985).

    Article  Google Scholar 

  21. Pieters, C. M. & Tompkins, S. Tsiolkovsky crater: A window into crustal processes on the lunar farside. J. Geophys. Res. E104, 21935–21949 (1999).

    Article  Google Scholar 

  22. Hawke, B. R. et al. Distribution and modes of occurrence of lunar anorthosite. J. Geophys. Res. 108, 5050 (2003).

    Article  Google Scholar 

  23. Shearer, C. K. & Papike, J. J. Early crustal building processes on the moon: Models for the petrogenesis of the magnesian suite. Geochem. Cosmochim. Acta 69, 3445–3461 (2005).

    Article  Google Scholar 

  24. Longhi, J. A new view of lunar ferroan anorthosites: Postmagma ocean petrogenesis. J. Geophys. Res. 108, 5083 (2003).

    Article  Google Scholar 

  25. Bruckenthal, E. A. & Pieters, C. M. Spectral effects of natural shock on plagioclase feldspar. Abstr. Lunar Planet. Sci. Conf. 15, 96–97 (1984).

    Google Scholar 

  26. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article  Google Scholar 

  27. Pieters, C. M. The moon as a spectral calibration standard enabled by lunar samples: The Clementine example. New Views Moon 2, 8025–8026 (1999).

    Google Scholar 

  28. Araki, H. et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323, 897–900 (2009).

    Article  Google Scholar 

  29. Namiki, N. et al. Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science 323, 900–905 (2009).

    Article  Google Scholar 

  30. Wessel, P. & Smith, W. H. F. Free software helps map and display data. EOS Trans. AGU 72, 441 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Grant-in-Aid for Young Scientists (B) from Japan Society for the Promotion of Science (20740249).

Author information

Authors and Affiliations

Authors

Contributions

Data analyses were conducted by S.Y., R.N., T. Matsunaga, Y.O. and M.O. The manuscript was produced by significant contributions from S.Y., R.N. and T. Matsunaga. T.H. contributed to the assessments of spectral features in the survey programme. Y.I. contributed to the production of the base maps of Figs 1 and 2 and discussion on the crust thickness. All of the authors, including T. Morota, N.H., J.H. and Y.Y., discussed and provided significant comments on the results and the manuscript.

Corresponding author

Correspondence to Satoru Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S., Nakamura, R., Matsunaga, T. et al. Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nature Geosci 3, 533–536 (2010). https://doi.org/10.1038/ngeo897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing