Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ancient ocean on Mars supported by global distribution of deltas and valleys

Subjects

Abstract

The climate of early Mars could have supported a complex hydrological system and possibly a northern hemispheric ocean covering up to one-third of the planet’s surface1,2,3,4,5. This notion has been repeatedly proposed1,2,3,4,5 and challenged6,7 over the past two decades, and remains one of the largest uncertainties in Mars research. Here, we used global databases of known deltaic deposits, valley networks8 and present-day martian topography to test for the occurrence of an ocean on early Mars. The distribution of ancient martian deltas delineates a planet-wide equipotential surface within and along the margins of the northern lowlands. We suggest that the level reconstructed from the analysis of the deltaic deposits may represent the contact of a vast ocean covering the northern hemisphere of Mars around 3.5 billion years ago. This boundary is broadly consistent with palaeoshorelines suggested by previous geomorphologic, thermophysic and topographic analyses, and with the global distribution and age of ancient valley networks. Our findings lend credence to the hypothesis that an ocean formed on early Mars as part of a global and active hydrosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data and methodology used for the analysis of the martian deltaic deposits.
Figure 2: Topography, geology and distribution of valleys and deltas on Mars.
Figure 3: Distribution and elevation of martian valley networks.

Similar content being viewed by others

References

  1. Parker, T. J., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in the west Deuteronilus Mensae region of Mars: Implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).

    Article  Google Scholar 

  2. Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S. & Komatsu, G. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594 (1991).

    Article  Google Scholar 

  3. Head, J. W. et al. Possible ancient oceans on Mars: Evidence from Mars orbiter laser altimeter data. Science 286, 2134–2137 (1999).

    Article  Google Scholar 

  4. Clifford, S. M. & Parker, T. J. The evolution of the martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001).

    Article  Google Scholar 

  5. Fairén, A. G. et al. Episodic flood inundations of the northern plains of Mars. Icarus 165, 53–67 (2003).

    Article  Google Scholar 

  6. Malin, M. & Edgett, K. Oceans or seas in the martian northern lowlands: High resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).

    Article  Google Scholar 

  7. Ghatan, G. J. & Zimbelman, J. R. Paucity of candidate coastal constructional landforms along proposed shorelines on Mars: Implications for a northern lowlands-filling ocean. Icarus 185, 171–196 (2006).

    Article  Google Scholar 

  8. Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 10.1029/2009JE003548 (2010, in the press).

  9. Stanley, D. G. & Warne, G. W. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265, 228–231 (1994).

    Article  Google Scholar 

  10. Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on Mars. Science 302, 1931–1934 (2003).

    Article  Google Scholar 

  11. Irwin, R. P. III, Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005).

    Article  Google Scholar 

  12. Di Achille, G., Hynek, B. M. & Searls, M. L. Positive identification of lake strandlines in Shalbatana Vallis, Mars. Geophys. Res. Lett. 36, L14201 (2009).

    Article  Google Scholar 

  13. Smith, D. E. et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001).

    Article  Google Scholar 

  14. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  Google Scholar 

  15. Hartmann, W. K. Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005).

    Article  Google Scholar 

  16. Howard, A. D., Moore, J. M. & Irwin, R. P. III An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).

    Article  Google Scholar 

  17. Fassett, C. I. & Head, J. W. The timing of martian valley network activity: Constraints from buffered crater counting. Icarus 195, 61–89 (2008).

    Article  Google Scholar 

  18. Fairén, A. G. A cold and wet Mars. Icarus 10.1016/j.icarus.2010.01.006 (2010, in the press).

    Article  Google Scholar 

  19. Dohm, J. M. et al. Possible ancient giant basin and related water enrichment in the Arabia Terra province, Mars. Icarus 190, 74–92 (2007).

    Article  Google Scholar 

  20. Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    Article  Google Scholar 

  21. Rossi, A. P. et al. Large-scale spring deposits on Mars? J. Geophys. Res. 113, E08016 (2008).

    Article  Google Scholar 

  22. Malin, M. C. & Edgett, K. S. Sedimentary rocks on Mars. Science 290, 1927–1937 (2000).

    Article  Google Scholar 

  23. Moore, J. M. & Wilhelms, D. E. Hellas as a possible site of ancient ice-covered lakes on Mars. Icarus 154, 258–276 (2001).

    Article  Google Scholar 

  24. Wilson, S. A., Howard, A. D., Moore, J. M. & Grant, J. A. Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009 (2007).

    Article  Google Scholar 

  25. Crown, D. A., Bleamaster, L. F. III & Mest, S. C. Styles and timing of volatile-driven activity in the eastern Hellas region of Mars. J. Geophys. Res. 110, E12S22 (2005).

    Article  Google Scholar 

  26. Carr, M. H. & Head, J. W. III Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042–5070 (2003).

    Article  Google Scholar 

  27. Leverington, D. W. & Ghent, R. R. Differential subsidence and rebound in response to changes in water loading on Mars: Possible effects on the geometry of ancient shorelines. J. Geophys. Res. 109, E01005 (2004).

    Google Scholar 

  28. Ruiz, J., Fairen, A. G., Dohm, J. M. & Tejero, R. Thermal isostasy and deformation of possible paleoshorelines on Mars. Planet. Space Sci. 52, 1297–1301 (2004).

    Article  Google Scholar 

  29. Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I. & Richards, M. A. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007).

    Article  Google Scholar 

  30. Scott, D. H. & Tanaka, K. L. Geologic Map of the Western Equatorial Region of Mars. (Misc. Invest. Ser. Map, I-1802–A, United States Geological Survey (USGS), 1986).

    Google Scholar 

  31. Greeley, R. & Guest, J. E. Geologic Map of the Eastern Equatorial Region of Mars. (Misc. Invest. Ser. Map, I-1802–B, United States Geological Survey (USGS), 1987).

    Google Scholar 

Download references

Acknowledgements

This research was supported by NASA Mars Data Analysis Program Grant no. NNX06AE08G. Comments of A. Fairen improved earlier versions of this manuscript. Supplementary Fig. S2 was obtained using the Generic Mapping Tools (P. Wessel, and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans. Amer. Geophys. U., vol. 76, pp. 329, 1995).

Author information

Authors and Affiliations

Authors

Contributions

G.D.A. conceived this research study, implemented the deltas’ catalogue and the topographic analyses, and wrote the paper. B.M.H. compiled the valley networks database, discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Gaetano Di Achille.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Achille, G., Hynek, B. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geosci 3, 459–463 (2010). https://doi.org/10.1038/ngeo891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing