Links between eccentricity forcing and the 100,000-year glacial cycle


Variations in the eccentricity (100,000 yr), obliquity (41,000 yr) and precession (23,000 yr) of Earth’s orbit have been linked to glacial–interglacial climate cycles. It is generally thought that the 100,000-yr glacial cycles of the past 800,000 yr are a result of orbital eccentricity1,2,3,4. However, the eccentricity cycle produces negligible 100-kyr power in seasonal or mean annual insolation, although it does modulate the amplitude of the precession cycle. Alternatively, it has been suggested that the recent glacial cycles are driven purely by the obliquity cycle5,6,7. Here I use statistical analyses of insolation and the climate of the past five million years to characterize the link between eccentricity and the 100,000-yr glacial cycles. Using cross-wavelet phase analysis, I show that the relative phase of eccentricity and glacial cycles has been stable since 1.2 Myr ago, supporting the hypothesis that 100,000-yr glacial cycles are paced8,9,10 by eccentricity4,11. However, I find that the time-dependent 100,000-yr power of eccentricity has been anticorrelated with that of climate since 5 Myr ago, with strong eccentricity forcing associated with weaker power in the 100,000-yr glacial cycle. I propose that the anticorrelation arises from the strong precession forcing associated with strong eccentricity forcing, which disrupts the internal climate feedbacks that drive the 100,000-yr glacial cycle. This supports the hypothesis that internally driven climate feedbacks are the source of the 100,000-yr climate variations12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Wavelet power spectra.
Figure 2: 100-kyr phase.
Figure 3: Modulations in the 100-kyr power of δ18O and eccentricity.


  1. 1

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  2. 2

    Imbrie, J. et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).

    Article  Google Scholar 

  3. 3

    Clemens, S. C. & Tiedemann, R. Eccentricity forcing of Pliocene-early Pleistocene climate revealed in a marine oxygen-isotope record. Nature 385, 801–804 (1997).

    Article  Google Scholar 

  4. 4

    Raymo, M. E. The timing of major terminations. Paleoceanography 12, 577–585 (1997).

    Article  Google Scholar 

  5. 5

    Huybers, P. & Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494 (2005).

    Article  Google Scholar 

  6. 6

    Huybers, P. Glacial variability over the last two million years: An extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression. Quat. Sci. Rev. 26, 37–55 (2007).

    Article  Google Scholar 

  7. 7

    Liu, Z., Cleaveland, L. C. & Herbert, T. D. Early onset and origin of 100-kyr cycles in Pleistocene tropical SST records. Earth Planet. Sci. Lett. 265, 703–715 (2008).

    Article  Google Scholar 

  8. 8

    Saltzman, B., Hansen, A. & Maasch, K. The late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing. J. Atmos. Sci. 41, 3380–3389 (1984).

    Article  Google Scholar 

  9. 9

    Gildor, H. & Tziperman, E. Sea ice as the glacial cycles climate switch: Role of seasonal and orbital forcing. Paleoceanography 15, 605–615 (2000).

    Article  Google Scholar 

  10. 10

    Tziperman, E., Raymo, M. E., Huybers, P. C. & Wunsch, C. Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography 21, PA4206 (2006).

    Article  Google Scholar 

  11. 11

    Ridgwell, A. J., Watson, A. J. & Raymo, M. E. Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin? Paleoceanography 14, 437–440 (1999).

    Article  Google Scholar 

  12. 12

    Nie, J., King, J. & Fang, X. Late Pliocene–early Pleistocene 100-ka problem. Geophys. Res. Lett. 35, L21606 (2008).

    Article  Google Scholar 

  13. 13

    Parrenin, F. & Paillard, D. Amplitude and phase of glacial cycles from a conceptual model. Earth Planet. Sci. Lett. 214, 243–250 (2003).

    Article  Google Scholar 

  14. 14

    Shackleton, N. J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902 (2000).

    Article  Google Scholar 

  15. 15

    Mudelsee, M. & Schulz, M. The mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet. Sci. Lett. 151, 117–123 (1997).

    Article  Google Scholar 

  16. 16

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  17. 17

    Clark, P. U. et al. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 . Qaut. Sci. Rev. 25, 3150–3184 (2006).

    Article  Google Scholar 

  18. 18

    Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–917 (2007).

    Article  Google Scholar 

  19. 19

    Paillard, D. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391, 378–381 (1998).

    Article  Google Scholar 

  20. 20

    Lisiecki, L. E. & Raymo, M. E. Plio-Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007).

    Article  Google Scholar 

  21. 21

    Imbrie, J. & Imbrie, J. Z. Modelling the climatic response to orbital variations. Science 207, 943–953 (1980).

    Article  Google Scholar 

  22. 22

    Raymo, M. E., Lisiecki, L. E. & Nisancioglu, K. H. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–495 (2006).

    Article  Google Scholar 

  23. 23

    Medina-Elizalde, M. & Lea, D. W. The mid-Pleistocene transition in the tropical Pacific. Science 310, 1009–1012 (2005).

    Article  Google Scholar 

  24. 24

    Saltzman, B. & Maasch, K. A. Carbon cycle instability as a cause of the Late Pleistocene ice age oscillations: Modeling the asymmetric response. Glob. Biogeochem. Cycles 2, 177–185 (1988).

    Article  Google Scholar 

  25. 25

    Toggweiler, J. R. Origin of the 100,000-year timescale in Antarctic temperatures and atmospheric CO2 . Paleoceanography 23, PA2211 (2008).

    Article  Google Scholar 

  26. 26

    Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100(B4), 6093–6095 (1995).

    Article  Google Scholar 

  27. 27

    Shackleton, N. J., Crowhurst, S., Hagelberg, T., Pisias, N. G. & Schneider, D. A. A new late Neogene time scale: Application to Leg 138 sites. Proc. Ocean Drill. Program Sci. Results 138, 73–101 (1995).

    Google Scholar 

  28. 28

    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    Google Scholar 

  29. 29

    Upton, G. & Fingleton, B. Spatial Data Analysis by Example Vol. 2 (John Wiley, 1989).

    Google Scholar 

  30. 30

    Priestley, M. B. Wavelets and time-dependent spectral analysis. J. Time Ser. Anal. 17, 85–103 (1996).

    Article  Google Scholar 

Download references


I thank T. Herbert, D. Lea and M. Raymo for many useful discussions.

Author information



Corresponding author

Correspondence to Lorraine E. Lisiecki.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 410 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lisiecki, L. Links between eccentricity forcing and the 100,000-year glacial cycle. Nature Geosci 3, 349–352 (2010).

Download citation

Further reading