Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge

Abstract

Cordilleran-type orogens are characterized by the formation of mountain chains and ridges near subduction zones. The growth of orogenic systems is sustained by frictional and viscous stresses, which promote surface uplift. However, horizontal extensional stresses1 also develop, which can contribute to the formation of marginal basins1 and gravitational orogenic collapse2. Here we use a numerical model to assess the effects of the buoyancy of the mantle wedge overlying the subduction zone on the evolution of Cordilleran orogenic systems. Our simulations show that as the subduction velocity decreases, stresses from the buoyancy of the mantle wedge can drive trench retreat and the formation of marginal basins. We find that ultimately, these stresses promote the gravitational collapse of the orogen, detachment of microplates and the break-up of active plate margins. We suggest that the effects of mantle-wedge buoyancy could explain the collapse of the East Gondwana Cordillera3, constructed along the edge of the Australia/East Antarctic craton as the Gondwana and Pacific–Phoenix plates converged4,5,6,7. We propose that 105–90 million years (Myr) ago, a change in the absolute plate motion reduced the subduction velocity, ultimately triggering the gravitational collapse of the orogen and the fragmentation of the active margin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ellipsis experiments.
Figure 2: Sensitivity to the buoyancy of the mantle wedge.
Figure 3: Fragmentation of the East Pacific Gondwana margin.

Similar content being viewed by others

References

  1. Sleep, N. H. Stress and flow beneath island arcs. Geophys. J. R. Astron. Soc. 42, 827–857 (1975).

    Article  Google Scholar 

  2. Rey, P. in Continental Reworking and Reactivation (eds Miller, J. A., Buick, I. S., Hand, M. & Holdsworth, R. E.) J. Geol. Soc. Lond. 184, 372–398 (2001).

  3. Tulloch, A. J. & Kimbrough, D. L. The Paparoa metamorphic core complex, Westland, New Zealand, Cretaceous extension associated with fragmentation of the Pacific margin of Gondwana. Tectonics 8, 1217–1234 (1989).

    Article  Google Scholar 

  4. Weaver, S. D., Bradshaw, J. D. & Adams, C. J. in Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.) 345–351 (Cambridge Univ. Press, 1991).

    Google Scholar 

  5. Mortimer, N. et al. Overview of the Median batholith, New Zealand: A new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. J. Afr. Earth Sci. 29, 257–268 (1999).

    Article  Google Scholar 

  6. Bradshaw, J. D. Cretaceous geotectonic patterns in the New Zealand region. Tectonics 8, 803–820 (1989).

    Article  Google Scholar 

  7. Tulloch, A. J., Beggs, M., Kula, J. L., Spell, T. L. & Mortimer, N. Proc. 2006 New Zealand Petroleum Conf. Ministry of Economic Development, Wellington, New Zealand 11 (Ministry of Economy and Development of New Zealand, 2006).

    Google Scholar 

  8. Barazangi, M. & Isacks, B. Lateral variations of seismic-wave attenuation in the upper mantle above the inclined earthquake zone of the Tonga Island Arc: Deep anomaly in the upper mantle. J. Geophys. Res. 76, 8493–8515 (1971).

    Article  Google Scholar 

  9. Guillot, S., Hattori, K. H., de Sigoyer, J., Nágler, T. & Auzende, A. L. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet. Sci. Lett. 193, 115–127 (2001).

    Article  Google Scholar 

  10. Billen, M. & Gurnis, M. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett. 193, 227–236 (2001).

    Article  Google Scholar 

  11. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle; implications for rheology, melt extraction, and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  Google Scholar 

  12. Grove, T. L, Chatterjee, N., Parman, S. W. & Médard, E. The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74–89 (2006).

    Article  Google Scholar 

  13. Ochs, F. A. & Lange, R. A. The density of hydrous magmatic liquids. Science 283, 1314–317 (1999).

    Article  Google Scholar 

  14. Gaetani, G. A. & Grove, T. L. in Inside the Subduction Factory (ed. Eiler, J. M.) 107–134 (Geophysical Monograph 138, American Geophysical Union, 2003).

    Book  Google Scholar 

  15. Rey, P., Vanderheaghe, O. & Teyssier, C. Gravitational collapse of continental crust: Definition, regimes, and modes. Tectonophysics 342, 435–449 (2001).

    Article  Google Scholar 

  16. De Paoli, M. C., Clarke, G. L., Klepeis, K. A., Allibone, A. H. & Turnbull, I. M. The eclogite–granulite transition: Mafic and intermediate assemblages at Breaksea Sound, New Zealand. J. Petrol. (in the press).

  17. Bryan, S. E., Ewart, A., Stephens, C. J., Parianos, J. & Downes, P. J. The Whitsunday Volcanic Province, central Queensland, Australia: Lithological and stratigraphic investigations of a silicic-dominated large igneous province. J. Volcanol. Geotherm. Res. 99, 55–78 (2000).

    Article  Google Scholar 

  18. Spell, T. L., McDougall, I. & Tulloch, A. J. Thermo-chronologic constraints on the breakup of the Pacific Gondwana margin: The Paparoa metamorphic core complex, South Island, New Zealand. Tectonics 19, 433–451 (2000).

    Article  Google Scholar 

  19. Laird, M.G. & Bradshaw, J.D. The break-up of a long-term relationship: The cretaceous separation of New Zealand from Gondwana. Gondwana Res. 7, 273–286 (2004).

    Article  Google Scholar 

  20. Richard, S. M. et al. Cooling history of the northern Ford Ranges, Marie Byrd Land, West Antarctica. Tectonics 13, 837–857 (1994).

    Article  Google Scholar 

  21. Siddoway, C. S., Richard, S., Fanning, C. M. & Luyendyk, B. P. in Gneiss Domes in Orogeny (eds Whitney, D. L., Teyssier, C. T. & Siddoway, C.) Spec. Pap. Geol. Soc. Am. 380, 267–294 (2004).

  22. Siddoway, C. S. in Antarctica: A Keystone in a Changing World: Proc. 10th Int. Symp. Antarctic Earth Sciences (eds Cooper, A. K. et al.) 91–114 (National Academies, 2008).

    Google Scholar 

  23. Waight, T. E. et al. Field characteristics, petrography, and geochronology of the Hohonu Batholith and the adjacent Granite Hill Complex, North Westland, New Zealand. N. Z. J. Geol. Geophys. 40, 1–17 (1997).

    Article  Google Scholar 

  24. Gaina, C., Müller, R. D., Royer, J.-Y. & Symonds, P. A. The tectonic history of the Tasman Sea: A puzzle with 13 pieces. J. Geophys. Res. 103, 12413–12423 (1998).

    Article  Google Scholar 

  25. Lafoy, Y., Brodien, I., Vially, R. & Exon, N. F. Structure of the basin and ridge system west of New Caledonia (Southwest Pacific): A synthesis. Mar. Geophys. Res. 26, 37–50 (2005).

    Google Scholar 

  26. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Article  Google Scholar 

  27. Lawver, L. A. & Gahagan, L. M. Constraints on timing of extension in the Ross Sea region. Terra Antarctica 1, 545–552 (1994).

    Google Scholar 

  28. Kamp, P. J. J. Tracking crustal processes by FT thermo-chronology in a forearc high (Hikurangi margin, New Zealand) involving Cretaceous subduction termination and mid-Cenozoic subduction initiation. Tectonophysics 307, 313–343 (1999).

    Article  Google Scholar 

  29. Vry, J. K. et al. Zoned (Cretaceous and Cenozoic) garnet and the timing of high-grade metamorphism, Southern Alps, New Zealand. J. Metamorphic Geol. 22, 137–157 (2004).

    Article  Google Scholar 

  30. Kula, J., Tulloch, A., Spell, T. L. & Wells, M. L. Two-stage rifting of Zealandia–Australia–Antarctica: Evidence from 40Ar/39Ar thermochronometry of the Sisters shear zone, Stewart Island, New Zealand. Geology 35, 411–414 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by AUSCOPE-NCRIS and Computational Infrastructure for Geodynamics software infrastructure. P.F.R. thanks the Australian Research Council for supporting this research through grant ARC-A00103441 and ARC-DP 0987608.

Author information

Authors and Affiliations

Authors

Contributions

P.F.R. proposed the paper’s main concept, designed the numerical experiments and wrote the bulk of the paper. R.D.M. provided the palaeogeographic reconstruction, contributed to the interpretation of the results and the writing of the paper.

Corresponding author

Correspondence to P. F. Rey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey, P., Müller, R. Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge. Nature Geosci 3, 257–261 (2010). https://doi.org/10.1038/ngeo825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing