Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary

Abstract

Calcareous nannoplankton, a large group of marine autotrophs that produce carbonate skeletons, were decimated to less than 10% of species during the Cretaceous/Palaeogene boundary mass extinction, 65 million years ago. Although the mass extinction followed an impact event, the exact cause of the nannoplankton mortality is not well understood. Here we assess the timing and spatial variability of nannoplankton extinction by analysing nannofossil counts in Cretaceous/Palaeogene boundary sections from all of the main ocean basins. We find that extinction rates were higher in the Northern Hemisphere oceans, and diversity remained low for 310,000 years. In contrast, Southern Hemisphere oceans showed lower extinction rates, and a nearly immediate recovery of normal nannoplankton populations. We propose that the oblique, northward impact concentrated ejected particulates into the Northern Hemisphere, blocking sunlight and suppressing photosynthesis. Increased rates of extinction and a prolonged recovery would then be associated with the greatest concentration of particulates. We speculate that metal poisoning from fallout of the particulates may have exacerbated and extended the nannoplankton crisis in the Northern Hemisphere, and thereby slowed the recovery of the Northern Hemisphere marine food web.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location and depositional environments of study sites at the K/Pg boundary (after ref. 51).
Figure 2: The percentage of species that became extinct at the K/Pg boundary plotted against latitude.
Figure 3: The Shannon–Wiener diversity across the K/Pg boundary plotted versus age.
Figure 4: NMS ordination of K/Pg samples and species for all sites studied.

Similar content being viewed by others

References

  1. Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Article  Google Scholar 

  2. Erwin, D. H. Lessons from the past: Biotic recoveries from mass extinctions. Proc. Natl Acad. Sci. USA 98, 5399–5403 (2001).

    Article  Google Scholar 

  3. Thierstein, H. R. Terminal Cretaceous plankton extinctions: A critical assessment. Geol. Soc. Am. Special Paper 190, 385–399 (1982).

    Article  Google Scholar 

  4. Sheehan, P. M. & Fastovsky, D. E. Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20, 556–560 (1992).

    Article  Google Scholar 

  5. Nichols, D. J. & Johnson, K. R. Plants and the K–T Boundary (Cambridge Paleobiology Series, 2008).

    Book  Google Scholar 

  6. Kring, D. A. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 4–21 (2007).

    Article  Google Scholar 

  7. Keller, G., Adatte, T., Gardin, S., Bartolini, A. & Bajpai, S. Main Deccan volcanism phase ends near the K–T boundary; Evidence from the Krishna–Godavari Basin, SE India. Earth Planet. Sci. Lett. 268, 293–311 (2008).

    Article  Google Scholar 

  8. Robinson, N., Ravizza, G., Coccioni, R., Peucker-Ehrenbrink, B. & Norris, R. A high-resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth Planet. Sci. Lett. 281, 159–168 (2009).

    Article  Google Scholar 

  9. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  Google Scholar 

  10. Griffis, K. & Chapman, D. J. Survival of phytoplankton under prolonged darkness; implications for the Cretaceous–Tertiary boundary darkness hypothesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 67, 305–314 (1988).

    Article  Google Scholar 

  11. Erickson, D. J. & Dickson, S. M. Global trace-element biogeochemistry at the K/Pg boundary; oceanic and biotic response to a hypothetical meteorite impact. Geology 15, 1014–1017 (1987).

    Article  Google Scholar 

  12. D’Hondt, S., Pilson, M. E. Q., Sigurdsson, H., Hanson, A. K. Jr & Carey, S. Surface-water acidification and extinction at the Cretaceous–Tertiary boundary. Geology 22, 983–986 (1994).

    Article  Google Scholar 

  13. Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P. & Covey, C. Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35, 41–78 (1997).

    Article  Google Scholar 

  14. Sigurdsson, H., D’Hondt, S. & Carey, S. The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol. Earth Planet. Sci. Lett. 109, 543–559 (1992).

    Article  Google Scholar 

  15. Raup, D. M. & Jablonski, D. Geography of end-Cretaceous marine bivalve extinctions. Science 260, 971–973 (1993).

    Article  Google Scholar 

  16. Jablonski, D. & Raup, D. M. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268, 389–391 (1995).

    Article  Google Scholar 

  17. Sole, R. V., Montoya, J. M. & Erwin, D. H. Recovery after mass extinction; evolutionary assembly in large-scale biosphere dynamics. Phil. Trans. R. Soc. Lond. 357, 697–707 (2002).

    Article  Google Scholar 

  18. Bown, P. R., Lees, J. A. & Young, J. R. in Coccolithophores; From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 481–508 (Springer, 2004).

    Google Scholar 

  19. Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous–Paleogene mass extinction. Geology 34, 297–300 (2006).

    Article  Google Scholar 

  20. Zachos, J. C., Arthur, M. A. & Dean, W. E. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–64 (1989).

    Article  Google Scholar 

  21. Kump, L. R. Interpreting carbon-isotope excursions; Strangelove oceans. Geology 19, 299–302 (1991).

    Article  Google Scholar 

  22. D’Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D. & Lindinger, M. Organic carbon fluxes and ecological recovery from the Cretaceous–Tertiary mass extinction. Science 282, 276–279 (1998).

    Article  Google Scholar 

  23. Bown, P. R. Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary. Geology 33, 653–656 (2005).

    Article  Google Scholar 

  24. Hallock, P. Fluctuations in the trophic resource continuum: A factor in global diversity cycles? Paleoceanography 2, 457–471 (1987).

    Article  Google Scholar 

  25. Johnson, K. R. & Hickey, L. J. in Global Catastrophes in Earth History (eds Sharpton, V. L. & Ward, P. D.) 433–444 (Geol. Soc. Am., 1990).

    Google Scholar 

  26. Schultz, P. H. & D’Hondt, S. L. Cretaceous–Tertiary (Chicxulub) impact angle and its consequences. Geology 24, 963–967 (1996).

    Article  Google Scholar 

  27. Alvarez, W., Claeys, P. & Kieffer, S. W. Emplacement of Cretaceous–Tertiary boundary shocked quartz from Chicxulub crater. Science 269, 930–935 (1995).

    Article  Google Scholar 

  28. Morgan, J. et al. Analyses of shocked quartz at the global K–P boundary indicate an origin from a single, high-angle, oblique impact at Chicxulub. Earth Planet. Sci. Lett. 251, 264–279 (2006).

    Article  Google Scholar 

  29. Pope, K. O. Impact dust not the cause of the Cretaceous–Tertiary mass extinction. Geology 30, 99–102 (2002).

    Article  Google Scholar 

  30. Covey, C., Ghan, S. J., Walton, J. J. & Weissman, P. R. in Global Catastrophes in Earth History (eds Sharpton, V. L. & Ward, P. D.) 263–270 (Geol. Soc. Am., 1990).

    Google Scholar 

  31. Anning, T., Harris, G. & Geider, R. J. Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). Eur. J. Phycol. 36, 233–241 (2001).

    Article  Google Scholar 

  32. Sandgren, C. D. Morphological variability in populations of chrysophycean resting cysts. 1. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19, 64–70 (1983).

    Article  Google Scholar 

  33. Cros, L., Kleijne, A., Zeltner, A., Billard, C. & Young, J. New examples of holococcolith–heterococcolith combination coccospheres and their implications for coccolithophorid biology. Mar. Micropaleontol. 39, 1–34 (2000).

    Article  Google Scholar 

  34. Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40, 503–529 (2002).

    Article  Google Scholar 

  35. Lamolda, M. A., Melinte, M. C. & Kaiho, K. Nannofloral extinction and survivorship across the K/T boundary at Caravaca, southeastern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 27–52 (2005).

    Article  Google Scholar 

  36. Antia, N. J. & Cheng, J. Y. The survival of axenic cultures of marine planktonic algae from prolonged exposure to darkness at 20 C. Phycologia 9, 179–183 (1970).

    Article  Google Scholar 

  37. Covey, C., Schneider, S. H. & Thompson, S. L. Global atmospheric effects of massive smoke injections from a nuclear war: Results from general circulation model simulations. Nature 308, 21–25 (1984).

    Article  Google Scholar 

  38. Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2 . Nature 407, 362–367 (2000).

    Google Scholar 

  39. Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008).

    Article  Google Scholar 

  40. Prinn, R. G. & Fegley, B. Jr Bolide impacts, acid rain, and biospheric traumas at the Cretaceous–Tertiary boundary. Earth Planet. Sci. Lett. 83, 1–15 (1987).

    Article  Google Scholar 

  41. Toon, O. B. et al. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth (eds Silver, L. T. & Schultz, P. H.) 187–200 (Geol. Soc. Am., 1982).

    Book  Google Scholar 

  42. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Interactive influences of bioactive trace-metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Article  Google Scholar 

  43. Bruland, K. W., Knauer, G. A. & Martin, J. H. Cadmium in northeast Pacific waters. Limnol. Oceanogr. 23, 618–625 (1978).

    Article  Google Scholar 

  44. Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 (1983).

    Article  Google Scholar 

  45. Hilting, A. K., Kump, L. R. & Bralower, T. J. Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene–Eocene biological pump. Paleoceanography 23, 1–15 (2008).

    Article  Google Scholar 

  46. Bice, K. L. & Marotzke, J. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. J. Geophys. Res. 106, 11529–11542 (2001).

    Article  Google Scholar 

  47. Yeats, P. A. The distribution of trace metals in ocean waters. Sci. Total Environ. 72, 131–149 (1988).

    Article  Google Scholar 

  48. Wunsch, C. & Heimbach, P. How long to oceanic tracer and proxy equilibrium? Quat. Sci. Rev. 27, 637–651 (2008).

    Article  Google Scholar 

  49. Schueth, J. D., Jiang, S., Bralower, T. J. & Patzkowsky, M. E. A multivariate analysis of the recovery of calcareous nannoplankton and foraminifera from the Cretaceous–Paleogene mass extinction. GSA Abstr. Programs 40, 318-11 (2008).

    Google Scholar 

  50. Alagret, L. & Thomas, E. Cretaceous/Paleogene boundary bathyal paleo-environments in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: The benthic foraminiferal record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 53–82 (2005).

    Article  Google Scholar 

  51. Keller, G. in Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes (eds MacLeod, N. & Keller, G.) 49–84 (W. W. Norton, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank J. Pospichal, P. Bown and H. Thierstein for sharing their unpublished nannofossil counts. This research was sponsored by the NASA Exobiology grant NNX07AK62G. Samples acquired from the Integrated Ocean Drilling Program funded by NSF.

Author information

Authors and Affiliations

Authors

Contributions

T.J.B., S.J. and M.E.P. designed the experiment, S.J., L.R.K. and J.D.S. conducted the analysis, T.J.B., L.R.K., M.E.P., S.J. and J.D.S. wrote the manuscript.

Corresponding author

Correspondence to Timothy J. Bralower.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1028 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S., Bralower, T., Patzkowsky, M. et al. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geosci 3, 280–285 (2010). https://doi.org/10.1038/ngeo775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing