Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton

Abstract

Application of the 147Sm–143Nd and 146Sm–142Nd chronometers has suggested that the initial differentiation of Earth’s mantle into enriched and depleted reservoirs may have begun within the first 100–200 million years of Earth’s history1. However, little is known about the differentiation of the early crust; although evidence has suggested the presence of enriched crustal material2,3,4,5, data regarding the nature and composition of this crust are limited. Here we present 147Sm–143Nd data from the weakly metamorphosed basalt and layered chert–barite successions from the Dresser Formation of the Pilbara Craton, Western Australia. The Sm–Nd isochron indicates an age of 3.49±0.10 billion years, in agreement with previous estimates from Pb–Pb (ref. 6) and U–Pb (ref. 7) dating, which indicates that the Sm–Nd system has not been reset. Our measured ɛNd value of −3.3±1.0 for the rocks at this site is consistent with formation from an older protolith. On the basis of our modelling of trace element and isotopic compositions from these rocks, we suggest that the older component was crustal in nature, and differentiated from the convective mantle more than 4.3 billion years ago.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: 147Sm–143Nd isochron plot for whole-rock samples of metabasalts, metakomatiites, barite and silicified carbonate from the Dresser Formation at North Pole.
Figure 2: Nb/U versus Nb/Th diagram for North Pole basalts.
Figure 3: Nd evolution curve for North Pole basalts compared with those of the depleted mantle and continental crust.

References

  1. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the Early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006).

    Article  Google Scholar 

  2. Kamber, B. S., Collerson, K. D., Moorbath, S. & Whitehouse, M. Inheritance of early Archean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol. 145, 25–26 (2003).

    Article  Google Scholar 

  3. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    Article  Google Scholar 

  4. O’Neil, J. R., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

    Article  Google Scholar 

  5. Upadhyay, D., Scherer, E. E. & Mezger, K. 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459, 1118–1120 (2009).

    Article  Google Scholar 

  6. Thorpe, R. I., Hickman, A. H., Davis, D. W., Moretnsen, J. K. & Trendall, A. F. in The Archaean: Terrains, Processes and Metallogeny Vol. 22 (eds Glover, J. E. & Ho, S. E.) 395–408 (Geology Department and University Extension, Univ. Western Australia Publication, 1992).

    Google Scholar 

  7. Van Kranendonk, M., Philippot, P., Lepot, K., Bodorokos, S. & Pirajno, F. Geological setting of Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambr. Res. 167, 93–124 (2008).

    Article  Google Scholar 

  8. Buick, R. & Dunlop, J. S. R. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277 (1990).

    Article  Google Scholar 

  9. Nijman, W., De Bruijne, K. C. H. & Valkering, M. E. Growth fault control of early Archaean cherts, barite mounds and chert–barite veins, North Pole Dome, eastern Pilbara, Western Australia. Precambr. Res. 88, 25–52 (1998).

    Article  Google Scholar 

  10. Van Kranendonk, M. J. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci. Rev. 74, 197–240 (2006).

    Article  Google Scholar 

  11. Kato, Y. & Makamura, K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambr. Res. 125, 191–243 (2003).

    Article  Google Scholar 

  12. Barley, M. E. Volcanic, sedimentary and tectonostratigraphic environments of the 3.46 Gyr Warrawoona Megasequence: A review. Precambr. Res. 60, 47–67 (1993).

    Article  Google Scholar 

  13. Condie, K. C. Plate Tectonics and Crustal Evolution (Butterworth-Heinemann, 1997).

    Google Scholar 

  14. Green, M. G., Sylvester, P. J. & Buick, R. Growth and recycling of Early Archaean continental crust: Geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics 322, 69–88 (2000).

    Article  Google Scholar 

  15. Van Kranendonk, M., Hickman, A. H. & Smithies, R. H. in Earth’s Oldest Rocks Vol. 15 (eds Van Kranendonk, M. J., Smithies, R. H. & Bennet, V.) 307–337 (Elsevier, 2007).

    Book  Google Scholar 

  16. Smithies, R. H., Champion, D. C. & Van Kranendonk, M. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett. 281, 298–306 (2009).

    Article  Google Scholar 

  17. Bickle, M. J. A 3500 Ma plutonic and volcanic calc-alkaline province in the Archaean East Pilbara Block. Contrib. Mineral. Petrol. 84, 25–35 (1983).

    Article  Google Scholar 

  18. Philippot, P. et al. Drilling Archean stratigraphic horizons: Pilbara Craton, Western Australia and Barberton Belt, South Africa. C. R. Palevol 8, 649–663 (2009).

    Article  Google Scholar 

  19. Buick, R. et al. Record of emergent continental crust approximately 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    Article  Google Scholar 

  20. Polat, A., Hofmann, A. W., Münker, C., Regelous, M. & Appel, P. W. U. Contrasting geochemical patterns in the 3.7–3.8 Gyr pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: Implications for postmagmatic alteration processes. Geochim. Cosmochim. Acta 67, 441–457 (2003).

    Article  Google Scholar 

  21. Condie, K. C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  22. Collerson, K. D. & Kamber, B. S. Evolution of the continents and the atmosphere inferred from Th–U–Nb systematics of the depleted mantle. Science 283, 1519–1522 (1999).

    Article  Google Scholar 

  23. Hofmann, A. W., Jochum, K. P., Seufert, H. M. & White, W. M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986).

    Article  Google Scholar 

  24. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    Article  Google Scholar 

  25. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  26. Mills, R. A. & Elderfield, H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 59, 3511–3524 (1995).

    Article  Google Scholar 

  27. Goldstein, S. J. & Jacobsen, S. B. Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  28. Moorbath, S., Whitehouse, M. & Kamber, B. S. Extreme Nd-isotope heterogeneity in the Early Archaean—fact or fiction? Case histories from northern Canada and West Greenland. Chem. Geol. 135, 213–231 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Institut de Physique du Globe de Paris, the Institut des Sciences de l’Univers (INSU) and the Geological Survey of Western Australia for supporting the Pilbara Drilling Project. P.P. acknowledges financial support from the Agence Nationale de la Recherche (ANR-Blanc). S.T. acknowledges support of a Centre National de la Recherche Scientifique (CNRS) postdoctoral position. This is IPGP contribution number 2578.

Author information

Authors and Affiliations

Authors

Contributions

S.G.T., B.B., M.V.K. and P.P. contributed equally to this work. P.P. and M.V.K. contributed to the field work and characterization of samples. S.G.T. carried out the analytical work with assistance from J-L.B. S.G.T., P.P., B.B. and M.V.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Pascal Philippot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 796 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tessalina, S., Bourdon, B., Van Kranendonk, M. et al. Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nature Geosci 3, 214–217 (2010). https://doi.org/10.1038/ngeo772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing