Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations


Climate sensitivity—the mean global temperature response to a doubling of atmospheric CO2 concentrations through radiative forcing and associated feedbacks—is estimated at 1.5–4.5 C (ref. 1). However, this value incorporates only relatively rapid feedbacks such as changes in atmospheric water vapour concentrations, and the distributions of sea ice, clouds and aerosols2. Earth-system climate sensitivity, by contrast, additionally includes the effects of long-term feedbacks such as changes in continental ice-sheet extent, terrestrial ecosystems and the production of greenhouse gases other than CO2. Here we reconstruct atmospheric carbon dioxide concentrations for the early and middle Pliocene, when temperatures were about 3–4 C warmer than preindustrial values3,4,5, to estimate Earth-system climate sensitivity from a fully equilibrated state of the planet. We demonstrate that only a relatively small rise in atmospheric CO2 levels was associated with substantial global warming about 4.5 million years ago, and that CO2 levels at peak temperatures were between about 365 and 415 ppm. We conclude that the Earth-system climate sensitivity has been significantly higher over the past five million years than estimated from fast feedbacks alone.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2: Alkenone-based atmospheric CO2 concentrations and CO2slope.
Figure 3: Estimated CO2 trends considering probable oceanographic changes at each site.


  1. 1

    Solomon, S. et al. IPCC Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007).

  2. 2

    Hansen, J. et al. Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J. 2, 217–231 (2008).

    Article  Google Scholar 

  3. 3

    Haywood, A. M. & Valdes, P. J. Modelling Pliocene warmth: Contribution of atmosphere, oceans and cryosphere. Earth Planet. Sci. Lett. 218, 363–377 (2004).

    Article  Google Scholar 

  4. 4

    Haywood, A. M. et al. Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 general circulation models. Glob. Planet. Change 66, 208–224 (2009).

    Article  Google Scholar 

  5. 5

    Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article  Google Scholar 

  6. 6

    Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene warm period. Science 309, 758–761 (2005).

    Article  Google Scholar 

  7. 7

    Dowsett, H. J. in The Micropalaeontological Society (eds Williams, M., Haywood, A. M., Gregory, J. & Schmidt, D.) 459–480 (Special Publication. Geol. Soc., 2007).

    Google Scholar 

  8. 8

    Kwiek, P. & Ravelo, A. C. Pacific Ocean intermediate and deep water circulation during the Pliocene. Palaeogeogr. Palaeoclimat. Palaeoecol. 154, 191–217 (1991).

    Article  Google Scholar 

  9. 9

    Raymo, M. E., Grant, B., Horowitz, M. & Rau, G. H. Mid-Pliocene warmth: Stronger greenhouse and stronger conveyor. Mar. Micropaleo. 27, 313–326 (1996).

    Article  Google Scholar 

  10. 10

    Hodell, D. A. & Venz-Curtis, K. A. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochem. Geophys. Geosyst. 7, Q09001 (2006).

    Article  Google Scholar 

  11. 11

    Mudelsee, M. & Raymo, M. E. Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20, PA4022 (2005).

    Article  Google Scholar 

  12. 12

    Haug, G. H. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998).

    Article  Google Scholar 

  13. 13

    Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001).

    Article  Google Scholar 

  14. 14

    Haug, G. H. et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005).

    Article  Google Scholar 

  15. 15

    Ruddiman, W. F. & Kutzbach, J. E. Forcing of Late Cenozoic Northern Hemisphere climate by plateau uplift in Southern Asia and the American West. J. Geophys. Res. 94, 18409–18427 (1989).

    Article  Google Scholar 

  16. 16

    Harrison, T. M., Yin, A. & Ryerson, F. J. in Tectonic Boundary Conditions for Climatic Reconstructions (eds Crowley, T. J. & Bruke, K. C.) 39–72 (Oxford Univ. Press, 1998).

    Google Scholar 

  17. 17

    Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez, A. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).

    Article  Google Scholar 

  18. 18

    Lunt, D. J., Foster, G. L., Haywood, A. M. & Stone, E. J. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454, 1102–1105 (2008).

    Article  Google Scholar 

  19. 19

    Conte, M. H., Volkman, J. K. & Eglinton, G. in The Haptophyte Algae (eds Green, J. C. & Leadbeater, B. S. C.) 351–377 (Clarendon, 1994).

    Google Scholar 

  20. 20

    Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotope fractionation. Geochim. Cosmochim. Acta. 62, 69–77 (1998).

    Article  Google Scholar 

  21. 21

    Riebesell, U., Revill, A. T., Hodsworth, D. G. & Volkman, J. K. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim. Cosmochim. Acta. 64, 4179–4192 (2000).

    Article  Google Scholar 

  22. 22

    Rost, B., Zondervan, I. & Riebesell, U. Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol. Oceanogr. 47, 120–128 (2002).

    Article  Google Scholar 

  23. 23

    Laws, E. A. et al. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae. Geochem. Geophys. Geosyst. 2, 1006 (2001).

    Google Scholar 

  24. 24

    Pagani, M., Freeman, K. H., Ohkouchi, K. & Caldeira, K. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: A test of the alkenone–CO2 proxy. Paleoceanography 17, 1009 (2002).

    Article  Google Scholar 

  25. 25

    Dekens, P. S., Ravelo, A. C. & McCarthy, M. Warm upwelling regions in the warm Pliocene, paleoceanography. Paleoceanography 22, PA3211 (2007).

    Article  Google Scholar 

  26. 26

    Schulte, S., Benthien, A., Müller, P. J. & Rühlemann, C. Carbon isotopic fractionation (ɛp) of C37 alkenones in deep-sea sediments: Its potential as a paleonutrient proxy. Paleoceanography 19, PA1011 (2004).

    Article  Google Scholar 

  27. 27

    Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    Article  Google Scholar 

  28. 28

    Van Der Burgh, J., Visscher, H., Dilcher, D. & Kurschner, W. M. Paleoatmospheric signatures in Neogene fossil leaves. Science 260, 1788–1790 (1993).

    Article  Google Scholar 

  29. 29

    Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).

    Article  Google Scholar 

  30. 30

    Conkright, M. E., Levitus, S. & Boyer, T. World Ocean Atlas 1994. Vol. 1: Nutrients NOAA Atlas NESDIS 1 (US Government Printing Office, 1994).

Download references


This work was funded by National Science Foundation grant OCE-0727306 and supported by the Yale Climate and Energy Institute. Conversations with K. Caldeira and R. DeConto were helpful and greatly appreciated.

Author information




All four authors were involved in drafting the paper, led by M.P. Z.L. carried out compound-specific carbon isotope analyses and alkenone temperature reconstructions, J.L. and A.C.R. analysed planktonic foraminifera δ13C.

Corresponding author

Correspondence to Mark Pagani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 803 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pagani, M., Liu, Z., LaRiviere, J. et al. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci 3, 27–30 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing