Earth system sensitivity inferred from Pliocene modelling and data

Abstract

Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earth’s climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere–ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30–50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Charney sensitivity and Earth system sensitivity.
Figure 2: Simulated mid-Pliocene temperature change.
Figure 3: Model–data comparison.

References

  1. 1

    Charney, J. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Research Council, 1979).

  2. 2

    Andronova, N. & Schlesinger, M. E. Objective estimation of the probability distribution for climate sensitivity. J. Geophys. Res. 106, 22605–22612 (2001).

  3. 3

    Frame, D. J. et al. Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett. 32, L09702 (2005).

  4. 4

    Annan, J. D. & Hargreaves, J. C. Using multiple observationally-based constraints to estimate climate sensitivity. Geophys. Res. Lett. 33, L06704 (2006).

  5. 5

    Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130–163 (American Geophysical Union, 1984).

  6. 6

    Slingo, A. Handbook of the Meteorological Office 11-Layer Atmospheric General Circulation Model. Vol. 1: Model Description (UK Meteorological Office, 1985).

  7. 7

    Houghton, J. T. et al. (eds) IPCC Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, 2001).

  8. 8

    Solomon, S. et al. (eds) IPCC Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007).

  9. 9

    Hansen, J. et al. Target atmospheric CO2: Where should humanity aim? Open Atmospheric Sci. J. 2, 217–231 (2008).

  10. 10

    Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

  11. 11

    Martin, J. H. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).

  12. 12

    Kump, L. R., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2 and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000).

  13. 13

    Ridley, J. K., Huybrechts, P., Gregory, J. M. & Lowe, J. A. Elimination of the Greenland ice sheet in a high CO2 climate. J. Clim. 18, 3409–3427 (2005).

  14. 14

    Notaro, M., Vavrus, S. & Liu, Z. Y. Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J. Clim. 20, 70–90 (2007).

  15. 15

    Price, S. F., Conway, H., Waddington, E. D. & Bindschadler, R. A. Model investigations of inland migration of fast-flowing outlet glaciers and ice streams. J. Glaciol. 54, 49–60 (2008).

  16. 16

    Schoof, C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res. 112, F03S38 (2007).

  17. 17

    Siegenthaler, U. et al. Stable carbon cycle-climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).

  18. 18

    Raymo, M. E., Grant, B., Horowitz, M. & Rau, G. H. Mid-Pliocene warmth: Stronger greenhouse and stronger conveyor. Mar. Micropaleontol. 27, 313–326 (1996).

  19. 19

    Kurschner, W. M., van der Burgh, J., Visscher, H. & Dilcher, D. L. Oak leaves as biosensors of late Neogene and early Pleiostocene paleoatmospheric CO2 concentrations. Mar. Micropaleontol. 27, 299–312 (1996).

  20. 20

    Dowsett, H. J. in Deep Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, J. F. & Schmidt, D. N.) 459–480 (Micropalaeontological Society Special Publications, Geological Society of London, 2007).

  21. 21

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

  22. 22

    Dowsett, H. J. et al. Middle Pliocene paleoenvironmental reconstruction: PRISM2. USGS Open File Report 99-535 <http://pubs.usgs.gov/of/1999/of99-535/> (1999).

  23. 23

    Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988).

  24. 24

    Thompson, R. S. & Fleming, R. F. Middle Pliocene vegetation: Reconstructions, paleoclimatic inferences, and boundary conditions for climatic modelling. Mar. Micropaleontol. 27, 27–49 (1996).

  25. 25

    Haywood, A. M. & Valdes, P. J. Modelling middle Pliocene warmth: Contribution of atmosphere, oceans and cryosphere. Earth Planet. Sci. Lett. 218, 363–377 (2004).

  26. 26

    Bony, S. et al. How well do we understand and evaluate climate change feedback processes? J. Clim. 19, 3445–3482 (2006).

  27. 27

    Hansen, J. et al. Efficacy of climate forcings. J. Geophys. Res. 110, D18104 (2005).

  28. 28

    Gordon, C. et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam. 16, 147–168 (2000).

  29. 29

    Covey, C. et al. An overview of results from the Coupled Model Intercomparison Project. Glob. Planet. Change 37, 103–133 (2003).

  30. 30

    Sloan, L. C., Crowley, T. J. & Pollard, D. Modeling of middle Pliocene climate with the NCAR GENESIS general circulation model. Mar. Micropaleontol. 27, 51–61 (1996).

  31. 31

    Chandler, M. A., Rind, D. & Thompson, R. S. Joint investigations of the middle Pliocene climate II: GISS GCM Northern Hemisphere results. Glob. Planet. Change 9, 197–219 (1994).

  32. 32

    Haywood, A. M., Dekens, P., Ravelo, A. C. & Williams, M. Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM. Geochem. Geophys. Geosyst. 6, Q03010 (2005).

  33. 33

    Salzmann, U., Haywood, A. M. & Lunt, D. J. The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century. Phil. Trans. R. Soc. A 367, 189–204 (2009).

  34. 34

    Dowsett, H. J., Robinson, M. M. & Foley, K. M. Pliocene three-dimensional global ocean temperature reconstruction. Clim. Past Discussions 5, 1901–1928 (2009).

  35. 35

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

  36. 36

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

  37. 37

    Schellnhuber, H. J., Cramer, W., Nakicenovic, N. & Yohe, G. Avoiding Dangerous Climate Change (Cambridge Univ. Press, 2006).

  38. 38

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458, 1158–1162 (2009).

  39. 39

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. in Meteorology at the Millennium (ed. Pearce, R.) 259–299 (Academic, 2001).

  40. 40

    Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level changes. Science 310, 456–460 (2005).

  41. 41

    Zwally, H. J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

  42. 42

    Parizek, B. R. & Alley, R. B. Implications of increased Greenland surface melt under global-warming scenarios: Ice sheet simulations. Quat. Sci. Rev. 23, 1013–1027 (2004).

  43. 43

    Lunt, D. J., Haywood, A. M., Foster, G. & Stone, E. J. The Arctic cryosphere in the mid-pliocene and the future. Phil. Trans. R. Soc. A 367, 49–67 (2009).

Download references

Acknowledgements

This work was carried out in the framework of the British Antarctic Survey (BAS) Greenhouse to ice-house: Evolution of the Antarctic Cryosphere And Palaeoenvironment (GEACEP) programme. D.J.L. is financially supported by BAS and RCUK fellowships.

Author information

D.J.L. carried out the GCM simulations and analysis. D.J.L., A.M.H., G.A.S. and P.J.V. were involved in the study design. H.J.D. developed the PRISM mid-Pliocene boundary conditions and the PRISM3 SST data set. U.S. carried out the model–data comparison with the vegetation data set. All authors discussed the results and commented on the manuscript.

Correspondence to Daniel J. Lunt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1146 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lunt, D., Haywood, A., Schmidt, G. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geosci 3, 60–64 (2010). https://doi.org/10.1038/ngeo706

Download citation

Further reading