Subjects

Abstract

Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Evidence of interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. J. Geophys. Res. 99, 22831–22855 (1994).

  2. 2.

    et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 9913–9914 (2007).

  3. 3.

    & Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).

  4. 4.

    & CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 42, 1401–1407 (2008).

  5. 5.

    et al. Trade, transport, and sinks extend the carbon dioxide responsibility of countries. Climatic Change 10.1007/s10584-009-9606-2 (2009).

  6. 6.

    , , & The contribution of Chinese exports to climate change. Energ. Policy 36, 3572–3577 (2008).

  7. 7.

    , , & Journey to world top emitter: an analysis of the driving forces of China's recent CO2 emissions surge. Geophys. Res. Lett. 36, L04709 (2009).

  8. 8.

    , , & Understanding Changes in UK CO2 Emissions 1992–2004: A Structural Decomposition Analysis (UK Department for Environment, Food and Rural Affairs, 2009).

  9. 9.

    & Embodied environmental emissions in US international trade, 1997–2004. Environ. Sci. Technol. 41, 4875–4881 (2007).

  10. 10.

    & The carbon footprint of nations – a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

  11. 11.

    et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).

  12. 12.

    , & Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5, 1601–1613 (2008).

  13. 13.

    Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000 Tellus B 55, 378–390 (2003).

  14. 14.

    & Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Glob. Change Biol. 11, 398–420 (2005).

  15. 15.

    et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

  16. 16.

    Instituto Nacional de Pesquisas Espaciais. PRODES: Assessment of Deforestation in Brazilian Amazonia <> (2009).

  17. 17.

    et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl Acad. Sci. USA 105, 20350–23055 (2008).

  18. 18.

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 1–18 (Cambridge Univ. Press, 2007).

  19. 19.

    et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 499–587 (Cambridge Univ. Press, 2007).

  20. 20.

    & Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B 58, 95–116 (2006).

  21. 21.

    , , , & Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299, 235–239 (2003).

  22. 22.

    et al. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23, GB1005 (2009).

  23. 23.

    et al. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. 111, C07S03 (2006).

  24. 24.

    et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

  25. 25.

    et al. Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett. 36, L12606 (2009).

  26. 26.

    et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630 (2002).

  27. 27.

    , , & CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).

  28. 28.

    et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

  29. 29.

    et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

  30. 30.

    et al. Multiple constraints on regional CO2 flux variations over land and oceans. Glob. Biogeochem. Cycles 19, GB1011 (2005).

  31. 31.

    et al. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II 56, 554–577 (2009).

  32. 32.

    et al. Trends in North Atlantic sea surface pCO2 from 1990 to 2006. Deep-Sea Res. II 56, 620–629 (2009).

  33. 33.

    , , , & Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre. Tellus B 59, 168–179 (2007).

  34. 34.

    Decadal increase of oceanic carbon dioxide in Southern Indian surface ocean waters (1991–2007). Deep-Sea Res. II 56, 607–619 (2009).

  35. 35.

    , , & Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. J. Geophys. Res. 111, C07S05 (2006).

  36. 36.

    , , , & The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008).

  37. 37.

    et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

  38. 38.

    in 2006 Minerals Yearbook 16.1–16.36 (US Geological Survey, October 2008).

  39. 39.

    BP Statistical Review of World Energy <> (2009).

  40. 40.

    , & A fast method for updating global fossil fuel carbon dioxide emissions. Environ. Res. Lett. 4, 034012 (2009).

  41. 41.

    in Mineral Commodities Summaries 40–41 (US Geological Survey, 2009).

  42. 42.

    Uncertainties in accounting for CO2 from fossil fuels. J. Ind. Ecol. 12, 136–139 (2008).

  43. 43.

    Food and Agriculture Organization of the United Nations. Global Forest Resource Assessment 2005 FAO Forestry Paper 147, 129–147 (2006).

  44. 44.

    , , , & Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974 (2006).

  45. 45.

    et al. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences 6, 235–249 (2009).

  46. 46.

    et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl Acad. Sci. USA 99, 14256–14261 (2002).

  47. 47.

    et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

  48. 48.

    et al. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past two decades. Glob. Biogeochem. Cycles 22, GB4027 (2008).

  49. 49.

    & Globalizing results from ocean in situ iron fertilization studies. Glob. Biogeochem. Cycles 20, GB2017 (2006).

  50. 50.

    , , & Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosci. Discuss. 6, 7517–7564 (2009).

Download references

Acknowledgements

The annual update and analyses of the global carbon budget are a collaborative effort of the Global Carbon Project, a joint project of the Earth System Science Partnership, contributed to by an international consortium of scientists. We thank C. Rödenbeck, A. Mouchet, R. Keeling and N. Gruber for comments on this manuscript, and C. Enright and E. T. Buitenhuis for modelling support. Many of the observations and modelling analyses were supported by funding agencies in the European Union (CARBOOCEAN and the Natural Environment Research Council's QUEST programme), the United States (the National Science Foundation, NASA, the National Oceanic and Atmospheric Administration and the Office of Science of the Department of Energy), Australia and Brazil.

Author information

Affiliations

  1. School of Environment Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

    • Corinne Le Quéré
    •  & Ute Schuster
  2. British Antarctic Survey, High Cross, Madingley Road, Cambridge BC3 0ET, UK

    • Corinne Le Quéré
  3. Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory 2601, Australia

    • Michael R. Raupach
    •  & Josep G. Canadell
  4. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, USA

    • Gregg Marland
  5. Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, Gif sur Yvette 91191, France

    • Laurent Bopp
    • , Philippe Ciais
    • , Pierre Friedlingstein
    •  & Nicolas Viovy
  6. NOAA Earth System Research Laboratory, Boulder, Colorado 80305, USA

    • Thomas J. Conway
  7. Woods Hole Oceanographic Institution, Clark 424, MS#25, Woods Hole, Massachusetts 02543, USA

    • Scott C. Doney
  8. Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, Washington 98115, USA

    • Richard A. Feely
  9. QUEST, Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK

    • Pru Foster
    • , Pierre Friedlingstein
    • , Joanna I. House
    •  & I. Colin Prentice
  10. Department of Earth and Atmospheric Sciences and Department of Agronomy, Purdue University, Indiana 47907-2051, USA

    • Kevin Gurney
  11. Woods Hole Research Center, Falmouth, Massachusetts 02540, USA

    • Richard A. Houghton
  12. Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK

    • Chris Huntingford
  13. Centre for Ecology and Hydrology, Bush Estate, Penicuik EH26 0QB, UK

    • Peter E. Levy
  14. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TH, UK

    • Mark R. Lomas
    •  & F. Ian Woodward
  15. AOS Program, Princeton University, PO Box CN710, Princeton, New Jersey 08544, USA

    • Joseph Majkut
    •  & Jorge L. Sarmiento
  16. LOCEAN-IPSL, CNRS, Institut Pierre Simon Laplace, Université Pierre et Marie Curie, Case 100, 4 Place Jussieu, 75252 Paris Cedex 5, France,

    • Nicolas Metzl
  17. Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, 12227-010, São José dos Campos-SP, Brazil

    • Jean P. Ometto
  18. Center for International Climate and Environmental Research - Oslo, PO Box 1129 Blindern, N-0318 Oslo, Norway

    • Glen P. Peters
  19. Department of Earth System Science, University of California, Irvine, California 92697, USA

    • James T. Randerson
  20. School of Forestry/Numerical Terradynamic Simulation Group, University of Montana, Missoula, Montana 59812, USA

    • Steven W. Running
  21. School of Geography, University of Leeds, Leeds LS2 9JT, UK

    • Stephen Sitch
  22. Lamont-Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades, New York 10964-8000, USA

    • Taro Takahashi
  23. Faculty of Earth and Life Sciences, VU University, Amsterdam 1081 HV, Netherlands.

    • Guido R. van der Werf

Authors

  1. Search for Corinne Le Quéré in:

  2. Search for Michael R. Raupach in:

  3. Search for Josep G. Canadell in:

  4. Search for Gregg Marland in:

  5. Search for Laurent Bopp in:

  6. Search for Philippe Ciais in:

  7. Search for Thomas J. Conway in:

  8. Search for Scott C. Doney in:

  9. Search for Richard A. Feely in:

  10. Search for Pru Foster in:

  11. Search for Pierre Friedlingstein in:

  12. Search for Kevin Gurney in:

  13. Search for Richard A. Houghton in:

  14. Search for Joanna I. House in:

  15. Search for Chris Huntingford in:

  16. Search for Peter E. Levy in:

  17. Search for Mark R. Lomas in:

  18. Search for Joseph Majkut in:

  19. Search for Nicolas Metzl in:

  20. Search for Jean P. Ometto in:

  21. Search for Glen P. Peters in:

  22. Search for I. Colin Prentice in:

  23. Search for James T. Randerson in:

  24. Search for Steven W. Running in:

  25. Search for Jorge L. Sarmiento in:

  26. Search for Ute Schuster in:

  27. Search for Stephen Sitch in:

  28. Search for Taro Takahashi in:

  29. Search for Nicolas Viovy in:

  30. Search for Guido R. van der Werf in:

  31. Search for F. Ian Woodward in:

Contributions

C.L.Q., M.R.R., J.G.C., G.M., R.A.H., P.C. and P. Friedlingstein conceived and designed the global CO2 budget. G.M. estimated the fossil fuel emissions and G.P.P. estimated the emissions from the production and international trade of goods and services. R.A.H., G.R.v.d.W. and J.T.R. estimated LUC emissions and were helped by J.G.C., J.P.O. and J.I.H. in their interpretation. S.S., N.V., P.C., P. Foster, P. Friedlingstein, C.H., P.E.L., M.R.L., F.I.W. and I.C.P. designed and performed the land model simulations and were helped by S.W.R. in their interpretation. C.L.Q., L.B., S.C.D., J.M. and J.L.S. designed and performed the ocean model simulations. R.A.F., N.M., U.S. and T.T. provided and analysed the ocean CO2 observations, and T.J.C. provided and analysed the atmospheric CO2 observations. K.G. provided updated atmospheric CO2 inversions. M.R.R. and C.L.Q. computed and analysed the trends in sources, sinks and airborne fraction. S.S., P. Friedlingstein and C.L.Q. analysed the residual with the help of all authors. All authors co-wrote the paper.

Corinne Le Quéré1, 2, Michael R. Raupach 3, Josep G. Canadell 3, Gregg Marland4, Laurent Bopp5, Philippe Ciais5, Thomas J. Conway6, Scott C. Doney7, Richard A. Feely8, Pru Foster9, Pierre Friedlingstein5, 9, Kevin Gurney10, Richard A. Houghton11, Joanna I. House9, Chris Huntingford12, Peter E. Levy13, Mark R. Lomas14, Joseph Majkut15, Nicolas Metzl16, Jean P. Ometto17, Glen P. Peters18, I. Colin Prentice9, James T. Randerson19, Steven W. Running20, Jorge L. Sarmiento15, Ute Schuster1, Stephen Sitch21, Taro Takahashi22, Nicolas Viovy5, Guido R. van der Werf23, F. Ian Woodward14

Corresponding author

Correspondence to Corinne Le Quéré.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Published

DOI

https://doi.org/10.1038/ngeo689

Further reading