Trends in the sources and sinks of carbon dioxide

Abstract

Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Fossil fuel CO2 and per-capita emissions since 1990.
Figure 2: Components of the global CO2 budget.
Figure 3: Trends in the observed partial pressure of CO2 for ocean minus air, for 1981–2007.

References

  1. 1

    Conway, T. J. et al. Evidence of interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. J. Geophys. Res. 99, 22831–22855 (1994).

    Google Scholar 

  2. 2

    Raupach, M. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 9913–9914 (2007).

    Google Scholar 

  3. 3

    Nakicenovic, N. & Swart, R. Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).

    Google Scholar 

  4. 4

    Peters, G. P. & Hertwich, E. G. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 42, 1401–1407 (2008).

    Google Scholar 

  5. 5

    Peters, G. P. et al. Trade, transport, and sinks extend the carbon dioxide responsibility of countries. Climatic Change 10.1007/s10584-009-9606-2 (2009).

  6. 6

    Weber, C. L., Peters, G. P., Guan, D. & Hubacek, K. The contribution of Chinese exports to climate change. Energ. Policy 36, 3572–3577 (2008).

    Google Scholar 

  7. 7

    Guan, D., Peters, G. P., Weber, C. L. & Hubacek, K. Journey to world top emitter: an analysis of the driving forces of China's recent CO2 emissions surge. Geophys. Res. Lett. 36, L04709 (2009).

    Google Scholar 

  8. 8

    Minx, J. C., Baiocchi, G., Wiedmann, T. & Barrett, J. Understanding Changes in UK CO2 Emissions 1992–2004: A Structural Decomposition Analysis (UK Department for Environment, Food and Rural Affairs, 2009).

    Google Scholar 

  9. 9

    Weber, C. & Matthews, H. S. Embodied environmental emissions in US international trade, 1997–2004. Environ. Sci. Technol. 41, 4875–4881 (2007).

    Google Scholar 

  10. 10

    Hertwich, E. G. & Peters, G. P. The carbon footprint of nations – a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    Google Scholar 

  11. 11

    Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).

    Google Scholar 

  12. 12

    Raupach, M. R., Canadell, J. G. & Le Quéré, C. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5, 1601–1613 (2008).

    Google Scholar 

  13. 13

    Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000 Tellus B 55, 378–390 (2003).

    Google Scholar 

  14. 14

    Mouillot, F. C. & Field, B. Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Glob. Change Biol. 11, 398–420 (2005).

    Google Scholar 

  15. 15

    van der Werf, G. R. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

    Google Scholar 

  16. 16

    Instituto Nacional de Pesquisas Espaciais. PRODES: Assessment of Deforestation in Brazilian Amazonia <http://www.obt.inpe.br/prodes/index.html> (2009).

  17. 17

    van der Werf, G. R. et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl Acad. Sci. USA 105, 20350–23055 (2008).

    Google Scholar 

  18. 18

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 1–18 (Cambridge Univ. Press, 2007).

  19. 19

    Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 499–587 (Cambridge Univ. Press, 2007).

    Google Scholar 

  20. 20

    Manning, A. C. & Keeling, R. F. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B 58, 95–116 (2006).

    Google Scholar 

  21. 21

    McNeil, B. I., Matear, R. J., Key, R. M., Bullister, J. L. & Sarmiento, J. L. Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299, 235–239 (2003).

    Google Scholar 

  22. 22

    Gruber, N. et al. Oceanic sources, sinks, and transport of atmospheric CO2 . Glob. Biogeochem. Cycles 23, GB1005 (2009).

    Google Scholar 

  23. 23

    Feely, R. A. et al. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. 111, C07S03 (2006).

    Google Scholar 

  24. 24

    Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Google Scholar 

  25. 25

    Lenton, A. et al. Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett. 36, L12606 (2009).

    Google Scholar 

  26. 26

    Gurney, K. R. et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630 (2002).

    Google Scholar 

  27. 27

    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).

    Google Scholar 

  28. 28

    Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Google Scholar 

  29. 29

    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Google Scholar 

  30. 30

    Peylin, P. et al. Multiple constraints on regional CO2 flux variations over land and oceans. Glob. Biogeochem. Cycles 19, GB1011 (2005).

    Google Scholar 

  31. 31

    Takahashi, T. et al. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II 56, 554–577 (2009).

    Google Scholar 

  32. 32

    Schuster, U. et al. Trends in North Atlantic sea surface pCO2 from 1990 to 2006. Deep-Sea Res. II 56, 620–629 (2009).

    Google Scholar 

  33. 33

    Corbière, A., Metzl, N., Reverdin, G., Brunet, C. & Takahashi, T. Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre. Tellus B 59, 168–179 (2007).

    Google Scholar 

  34. 34

    Metzl, N. Decadal increase of oceanic carbon dioxide in Southern Indian surface ocean waters (1991–2007). Deep-Sea Res. II 56, 607–619 (2009).

    Google Scholar 

  35. 35

    Takahashi, T., Sutherland, S. C., Feely, R. A. & Wanninkhof, R. Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. J. Geophys. Res. 111, C07S05 (2006).

    Google Scholar 

  36. 36

    Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008).

    Google Scholar 

  37. 37

    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Google Scholar 

  38. 38

    Van Oss, H. G. in 2006 Minerals Yearbook 16.1–16.36 (US Geological Survey, October 2008).

    Google Scholar 

  39. 39

    BP Statistical Review of World Energy <http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622> (2009).

  40. 40

    Myhre, G., Alterskjaer, K. & Lowe, D. A fast method for updating global fossil fuel carbon dioxide emissions. Environ. Res. Lett. 4, 034012 (2009).

    Google Scholar 

  41. 41

    Van Oss, H. G. in Mineral Commodities Summaries 40–41 (US Geological Survey, 2009).

    Google Scholar 

  42. 42

    Marland, G. Uncertainties in accounting for CO2 from fossil fuels. J. Ind. Ecol. 12, 136–139 (2008).

    Google Scholar 

  43. 43

    Food and Agriculture Organization of the United Nations. Global Forest Resource Assessment 2005 FAO Forestry Paper 147, 129–147 (2006).

  44. 44

    Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974 (2006).

    Google Scholar 

  45. 45

    van der Werf, G. R. et al. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences 6, 235–249 (2009).

    Google Scholar 

  46. 46

    DeFries, R. S. et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl Acad. Sci. USA 99, 14256–14261 (2002).

    Google Scholar 

  47. 47

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Google Scholar 

  48. 48

    Thomas, H. et al. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past two decades. Glob. Biogeochem. Cycles 22, GB4027 (2008).

    Google Scholar 

  49. 49

    Aumont, O. & Bopp, L. Globalizing results from ocean in situ iron fertilization studies. Glob. Biogeochem. Cycles 20, GB2017 (2006).

    Google Scholar 

  50. 50

    Galbraith, E. D., Gnanadesikan, A., Dunne, J. P. & Hiscock, M. R. Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosci. Discuss. 6, 7517–7564 (2009).

    Google Scholar 

Download references

Acknowledgements

The annual update and analyses of the global carbon budget are a collaborative effort of the Global Carbon Project, a joint project of the Earth System Science Partnership, contributed to by an international consortium of scientists. We thank C. Rödenbeck, A. Mouchet, R. Keeling and N. Gruber for comments on this manuscript, and C. Enright and E. T. Buitenhuis for modelling support. Many of the observations and modelling analyses were supported by funding agencies in the European Union (CARBOOCEAN and the Natural Environment Research Council's QUEST programme), the United States (the National Science Foundation, NASA, the National Oceanic and Atmospheric Administration and the Office of Science of the Department of Energy), Australia and Brazil.

Author information

Affiliations

Authors

Contributions

C.L.Q., M.R.R., J.G.C., G.M., R.A.H., P.C. and P. Friedlingstein conceived and designed the global CO2 budget. G.M. estimated the fossil fuel emissions and G.P.P. estimated the emissions from the production and international trade of goods and services. R.A.H., G.R.v.d.W. and J.T.R. estimated LUC emissions and were helped by J.G.C., J.P.O. and J.I.H. in their interpretation. S.S., N.V., P.C., P. Foster, P. Friedlingstein, C.H., P.E.L., M.R.L., F.I.W. and I.C.P. designed and performed the land model simulations and were helped by S.W.R. in their interpretation. C.L.Q., L.B., S.C.D., J.M. and J.L.S. designed and performed the ocean model simulations. R.A.F., N.M., U.S. and T.T. provided and analysed the ocean CO2 observations, and T.J.C. provided and analysed the atmospheric CO2 observations. K.G. provided updated atmospheric CO2 inversions. M.R.R. and C.L.Q. computed and analysed the trends in sources, sinks and airborne fraction. S.S., P. Friedlingstein and C.L.Q. analysed the residual with the help of all authors. All authors co-wrote the paper.

Corinne Le Quéré1, 2, Michael R. Raupach 3, Josep G. Canadell 3, Gregg Marland4, Laurent Bopp5, Philippe Ciais5, Thomas J. Conway6, Scott C. Doney7, Richard A. Feely8, Pru Foster9, Pierre Friedlingstein5, 9, Kevin Gurney10, Richard A. Houghton11, Joanna I. House9, Chris Huntingford12, Peter E. Levy13, Mark R. Lomas14, Joseph Majkut15, Nicolas Metzl16, Jean P. Ometto17, Glen P. Peters18, I. Colin Prentice9, James T. Randerson19, Steven W. Running20, Jorge L. Sarmiento15, Ute Schuster1, Stephen Sitch21, Taro Takahashi22, Nicolas Viovy5, Guido R. van der Werf23, F. Ian Woodward14

Corresponding author

Correspondence to Corinne Le Quéré.

Supplementary information

Supplementary Information

Supplementary Information (PDF 569 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Quéré, C., Raupach, M., Canadell, J. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci 2, 831–836 (2009). https://doi.org/10.1038/ngeo689

Download citation

Further reading