Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2


Several episodes of abrupt and transient warming, each lasting between 50,000 and 200,000 years, punctuated the long-term warming during the Late Palaeocene and Early Eocene (58 to 51 Myr ago) epochs1,2. These hyperthermal events, such as the Eocene Thermal Maximum 2 (ETM2) that took place about 53.5 Myr ago2, are associated with rapid increases in atmospheric CO2 content. However, the impacts of most events are documented only locally3,4. Here we show, on the basis of estimates from the TEX86′ proxy, that sea surface temperatures rose by 3–5 C in the Arctic Ocean during the ETM2. Dinoflagellate fossils demonstrate a concomitant freshening and eutrophication of surface waters, which resulted in euxinia in the photic zone. The presence of palm pollen implies5 that coldest month mean temperatures over the Arctic land masses were no less than 8 C, in contradiction of model simulations that suggest hyperthermal winter temperatures were below freezing6. In light of our reconstructed temperature and hydrologic trends, we conclude that the temperature and hydrographic responses to abruptly increased atmospheric CO2 concentrations were similar for the ETM2 and the better-described Palaeocene–Eocene Thermal Maximum7,8, 55.5 Myr ago.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core photo and palynological and geochemical results across ETM2 of IODP Core 302-4A-27X, Lomonosov Ridge, Arctic Ocean.
Figure 2: Geochemical and palynological results across the latest Palaeocene and Early Eocene of IODP Hole 302-4A, Lomonosov Ridge, Arctic Ocean.


  1. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  2. Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005).

    Article  Google Scholar 

  3. Stap, L., Sluijs, A., Thomas, E. & Lourens, L. J. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography 24, 10.1029/2008PA001655 (2009).

  4. Nicolo, M. J., Dickens, G. R., Hollis, C. J. & Zachos, J. C. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35, 699–702 (2007).

    Article  Google Scholar 

  5. Royer, D. L., Osborne, C. P. & Beerling, D. High CO2 increases the freezing sensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras. Geology 30, 963–966 (2000).

    Article  Google Scholar 

  6. Shellito, C. J., Sloan, L. C. & Huber, M. Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 113–123 (2003).

    Article  Google Scholar 

  7. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006).

    Article  Google Scholar 

  8. Sluijs, A. et al. Arctic late Paleocene–early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography 23, PA1S11 (2008).

    Google Scholar 

  9. Cramer, B. S., Wright, J. D., Kent, D. V. & Aubry, M.-P. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 10.1029/2003PA000909 (2003).

  10. Glebovsky, V. et al. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics 40, 263–281 (2006).

    Article  Google Scholar 

  11. Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene-Eocene thermal maximum. Nature 442, 671–675 (2006).

    Article  Google Scholar 

  12. Stein, R., Boucsein, B. & Meyer, H. Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge. Geophys. Res. Lett. 10.1029/2006GL026776 (2006).

  13. Schouten, S. et al. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic. Earth Planet. Sci. Lett. 258, 581–592 (2007).

    Article  Google Scholar 

  14. Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H. & Sinninghe Damsté, J. S. Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 261, 230–238 (2007).

    Article  Google Scholar 

  15. O’Regan, M. et al. Mid-Cenozoic Tectonic and Paleoenvironmental setting of the Central Arctic Ocean. Paleoceanography 23, PA1S20 (2008).

    Google Scholar 

  16. Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606–609 (2006).

    Article  Google Scholar 

  17. Sluijs, A., Pross, J. & Brinkhuis, H. From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth Sci. Rev. 68, 281–315 (2005).

    Google Scholar 

  18. Sinninghe Damsté, J. S., Wakeham, S. G., Kohnen, M. E. L., Hayes, J. M. & de Leeuw, J. W. A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea. Nature 362, 827–829 (1993).

    Article  Google Scholar 

  19. Krutzsch, W. & Vanhoorne, R. Die Pollenflora von Epinois und Loksbergen in Belgien. Palaeontographica Abt. B 163, 1–110 (1977).

    Google Scholar 

  20. Schweitzer, H.-J. Environment and climate in the early Tertiary of Spitsbergen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 297–311 (1980).

    Article  Google Scholar 

  21. Eldrett, J. S., Greenwood, D. R., Harding, I. C. & Huber, M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973 (2009).

    Article  Google Scholar 

  22. Greenwood, D. R. & Wing, S. L. Eocene continental climates and latitudinal temperature gradients. Geology 23, 1044–1048 (1995).

    Article  Google Scholar 

  23. Van der Burgh, J. Some palms in the Miocene of the lower Rhenish Plain. Rev. Palaeobotany Palynology 40, 359–374 (1984).

    Article  Google Scholar 

  24. Larcher, W. & Winter, A. Frost susceptibility of palms: Experimental data and their interpretation. Principes 25, 143–152 (1981).

    Google Scholar 

  25. Menzel, D., Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 1–15 (2006).

    Article  Google Scholar 

  26. Bujak, J. P. & Brinkhuis, H. in Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (eds Aubry, M.-P., Lucas, S. G. & Berggren, W. A.) 277–295 (Columbia Univ. Press, 1998).

    Google Scholar 

  27. Sluijs, A. et al. Eustatic variations during the Paleocene-Eocene greenhouse world. Paleoceanography 23, PA4216 (2008).

    Google Scholar 

  28. Sluijs, A. et al. Environmental precursors to light carbon input at the Paleocene/Eocene boundary. Nature 450, 1218–1221 (2007).

    Article  Google Scholar 

  29. Peters, R. B. & Sloan, L. C. High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum. Geology 28, 979–982 (2000).

    Article  Google Scholar 

  30. Abbot, D. S., Huber, M., Bousquet, G. & Walker, C. C. High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophys. Res. Lett. 36, L05702 (2009).

    Article  Google Scholar 

Download references


This research used samples and data provided by the Integrated Ocean Drilling Program (IODP). Financial support for this research was provided by the Netherlands Organisation for Scientific Research to A.S. (NWO-Veni grant 863.07.001), S.S. (NWO-Vici grant), P.L.S., F.S., J.S.D. and H.B., and by the Deutsche Forschungsgemeinschaft (DFG) to U.R. We thank G. Harrington (University of Birmingham) and M. Harley (Royal Botanical Gardens, Kew) for confirming the identification of Arecipites pollen, J. van der Burgh (Utrecht University), the IODP Expedition 302 Scientific Party and Urbino Summer School in Palaeoclimatology Instructors for discussions, and L. Bik, E. C. Hopmans, A. Mets, J. van Tongeren and N. Welters for technical support.

Author information

Authors and Affiliations



A.S., S.S., U.R. and H.B. designed the research, A.S., T.H.D. and H.B sampled the core, A.S. and G.J.R. generated δ13CTOC data, A.S. and H.B. analysed dinoflagellate cyst assemblages, T.H.D. analysed the terrestrial palynomorphs, S.S., P.L.S., F.S. and J.S.D. carried out sulphur-bound isorenieratane and TEX86′ analyses, J.H.K. calculated the revised TEX86′ calibration and U.R. carried out XRF core scanning. All authors contributed to data interpretation. A.S. and S.S. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Appy Sluijs or Timme H. Donders.

Supplementary information

Supplementary Information

Supplementary Information (PDF 700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sluijs, A., Schouten, S., Donders, T. et al. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nature Geosci 2, 777–780 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing