Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple origins of linear dunes on Earth and Titan

A Corrigendum to this article was published on 01 February 2010

This article has been updated


Dunes with relatively long and parallel crests are classified as linear dunes. On Earth, they form in at least two environmental settings: where winds of bimodal direction blow across loose sand, and also where single-direction winds blow over sediment that is locally stabilized, be it through vegetation, sediment cohesion or topographic shelter from the winds. Linear dunes have also been identified on Titan, where they are thought to form in loose sand. Here we present evidence that in the Qaidam Basin, China, linear dunes are found downwind of transverse dunes owing to higher cohesiveness in the downwind sediments, which contain larger amounts of salt and mud. We also present a compilation of other settings where sediment stabilization has been reported to produce linear dunes. We suggest that in this dune-forming process, loose sediment accumulates on the dunes and is stabilized; the stable dune then functions as a topographic shelter, which induces the deposition of sediments downwind. We conclude that a model in which Titan’s dunes formed similarly in cohesive sediments cannot be ruled out by the existing data.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Satellite images of dunes in the Qaidam Basin, China.
Figure 2: Dunes viewed from the ground.
Figure 3: Plot showing total silt, clay, and salt content for transverse dunes, longitudinal dunes, and interdune sediment.

Change history

  • 24 January 2010

    In the version of this Article originally published, one of the data points in Fig. 3 was incorrect. This error has been corrected in the HTML and PDF versions of the Article.


  1. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, 1941).

    Google Scholar 

  2. McKee, E. D. & Tibbits, G. C. Primary structures of a seif dune and associated deposits in Libya. J. Sedim. Petrol. 34, 5–17 (1964).

    Google Scholar 

  3. Tsoar, H. Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology 30, 567–578 (1983).

    Article  Google Scholar 

  4. Tsoar, H. Linear dunes—forms and formation. Prog. Phys. Geogr. 13, 507–528 (1989).

    Article  Google Scholar 

  5. Rubin, D. M. & Hunter, R. E. Bedform alignment in directionally varying flow. Science 237, 276–278 (1987).

    Article  Google Scholar 

  6. Rubin, D. M. & Ikeda, H. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 37, 673–684 (1990).

    Article  Google Scholar 

  7. Lacy, J. R., Rubin, D. M., Ikeda, H., Mokudai, K. & Hanes, D. M. Bed forms created by simulated waves and currents in a large flume. J. Geophys. Res. 112, C10018 (2007).

    Article  Google Scholar 

  8. Werner, B. T. & Kocurek, G. Bed-form dynamics; does the tail wag the dog? Geology 25, 771–774 (1997).

    Article  Google Scholar 

  9. Kocurek, G. & Ewing, R. Aeolian dune field self-organization—implications for the formation of simple versus complex dune-field patterns. Geomorphology 72, 94–105 (2005).

    Article  Google Scholar 

  10. Reffet, E., Courrech du Pont, S., Hersen, P., Douady, S. & Fulchignoni, M. in Planetary Dunes Workshop, abstr. 7018 (2008); <>.

  11. Fryberger, S. G. & Dean, G. in A Study of Global Sand Seas (ed. McKee, E. D.) 137–169 (USGS Professional Paper 1052, GPO, 1979).

    Google Scholar 

  12. Rubin, D. M. & Hunter, R. E. Why longitudinal dunes are rarely recognized in the geologic record. Sedimentology 32, 147–157 (1985).

    Article  Google Scholar 

  13. Rubin, D. M. Cross-Bedding, Bedforms, and Paleocurrents (SEPM, 1987).

    Book  Google Scholar 

  14. Bristow, C. S., Duller, G. A. T. & Lancaster, N. Age and dynamics of linear dunes in the Namib Desert. Geology 35, 555–558 (2007).

    Article  Google Scholar 

  15. Rubin, D. M., Tsoar, H. & Blumberg, D. G. A second look at western Sinai seif dunes and their lateral migration. Geomorphology 93, 335–342 (2008).

    Article  Google Scholar 

  16. Hesp, P. A. The formation of shadow dunes. J. Sedim. Petrol. 51, 101–111 (1981).

    Google Scholar 

  17. Herrmann, H.,J., Durán, O., Parteli, E. J. R. & Schatz, V. Vegetation and induration as sand dunes stabilizers. J. Coast. Res. 24, 1357–1368 (2008).

    Article  Google Scholar 

  18. Hesp, P. A., Hyde, R., Hesp, V. J. & Qian, Z. Longitudinal dunes can move sideways. Earth Surf. Process. Landf. 14, 447–451 (1989).

    Article  Google Scholar 

  19. Petrov, M. P. Deserts of the World (Wiley, 1976).

    Google Scholar 

  20. Melton, F. A. A tentative classification of sand dunes: Its application to dune history in the southern High Plains. J. Geol. 48, 113–174 (1940).

    Article  Google Scholar 

  21. Verstappen, H. T. On the origin of longitudinal (seif) dunes. Z. Geomorphol. 12, 200–220 (1968).

    Google Scholar 

  22. Tsoar, H. & Moller, J. T. in Aeolian Geomorphology (ed. Nickling, W. G.) 75–95 (Allen and Unwin, 1986).

    Google Scholar 

  23. Kerr, R. C. & Nigra, J. O. Eolian sand control. Bull. Am. Assoc. Petrol. Geol. 36, 1541–1573 (1952).

    Google Scholar 

  24. Schatz, V., Tsoar, H., Edgett, K. S., Parteli, E. J. R. & Herrmann, H. J. Evidence for indurated sand dunes in the Martian north polar region. J. Geophys. Res. 111, E04006 (2006).

    Article  Google Scholar 

  25. Flood, R. D. Classification of sedimentary furrows and a model for furrow initiation and evolution. Geol. Soc. Am. Bull. 94, 630–639 (1983).

    Article  Google Scholar 

  26. Bryant, W., Bean, D., Slowey, N., Dellapenna, E. & Scott, E. Deepwater currents form mega-furrows near US Gulf ’s Sigsbee Escarpment. Offshore Magazine 61, 94–95 (2001).

    Google Scholar 

  27. Radebaugh, J. et al. Dunes on Titan observed by Cassini RADAR. Icarus 194, 690–703 (2008).

    Article  Google Scholar 

  28. Tokano, T. Dune-forming winds on Titan and the influence of topography. Icarus 194, 243–262 (2008).

    Article  Google Scholar 

  29. Lorenz, R. D. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006).

    Article  Google Scholar 

  30. Barnes, J. W. et al. Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus 195, 400–414 (2008).

    Article  Google Scholar 

  31. Spencer, C. et al. Terrestrial and Martian analogues to the sand seas on Titan. Geol. Soc. Am. Abstr. Prog. 39, 571 (2007).

    Google Scholar 

  32. Reffet, E. et al. Titan’s longitudinal dunes in the lab. Bull. Am. Astron. Soc. 39, 501 (2007).

    Google Scholar 

  33. Stiles, B. W. et al. Determining Titan surface topography from Cassini SAR data. Icarus 186 10.1016/j.icarus.2009.03.032 (2009).

  34. Wald, C. Titan’s winds seem to blow backward. Science 323, 1418 (2009).

    Article  Google Scholar 

  35. Lancaster, N. et al. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara of Mauritania. Geology 30, 991–994 (2002).

    Article  Google Scholar 

  36. Rubin, D. M. Lateral migration of linear dunes in the Strzelecki Desert, Australia. Earth Surf. Process. Landf. 15, 1–14 (1990).

    Article  Google Scholar 

  37. Soderblom, L. A. et al. Correlations between Cassini VIMS Spectra and RADAR SAR images: Implications for Titan’s surface composition and the character of the Huygens probe landing site. Planet. Space Sci. 55, 2025–2036 (2007).

    Article  Google Scholar 

  38. Lunine, J. L. & Lorenz, R. D. Rivers, lakes, dunes and rain: Crustal processes in Titan’s methane cycle. Annu. Rev. Earth Planet. Sci. 37, 299–320 (2009).

    Article  Google Scholar 

  39. Tokano, T. et al. Methane drizzle on Titan. Nature 442, 432–435 (2006).

    Article  Google Scholar 

  40. Ádámkovics, M. et al. Widespread morning drizzle on Titan. Science 318, 962–965 (2007).

    Article  Google Scholar 

  41. Zarnecki, J. C. et al. A soft solid surface on Titan as revealed by the Huygens surface science package. Nature 438, 792–795 (2005).

    Article  Google Scholar 

  42. Radebaugh, J. et al. Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology 10.1016/j.geomorph.2009.02.022 (2009).

Download references


We thank A. Draut, J. Xu, and J. Warrick (all at USGS, Santa Cruz), J. Barnes (University of Idaho), and J. Radebaugh (Brigham Young University) for reviewing this manuscript and offering constructive comments. We also thank the Australian Academy of Science and the Chinese Academy of Science for funding and support, G. M. da Silva for analytical assistance, and M. L. Eggart for cartographic assistance.

Author information

Authors and Affiliations



P.A.H. arranged travel to Qaidam Basin, and the authors conducted fieldwork there together. P.A.H. analysed dune sediment for salt and mud content and calculated the sand transport rose. D.M.R. wrote the manuscript, and P.A.H. reviewed it and added content.

Corresponding author

Correspondence to David M. Rubin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rubin, D., Hesp, P. Multiple origins of linear dunes on Earth and Titan. Nature Geosci 2, 653–658 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing