Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites

Abstract

The early stages of planetary differentiation are characterized by the formation of magma oceans, which crystallize from the base up1,2. The final, iron-rich residues of crystallization are dense and therefore tend to sink into the mantle, whereas the deeper, magnesium-rich material tends to rise up3,4. The resultant mantle overturn would have had a profound influence on the evolution of the planets3,4,5,6. Such an event probably occurred on Mars, but its initiation, timing and geochemical consequences are poorly constrained. Here we use isotopic data for nakhlite meteorites—chunks of martian crust transported to the Earth—and numerical simulations to constrain the evolution of the early martian mantle. We interpret the isotopic composition of the meteorites as evidence for an episode that occurred relatively early in Mar’s history, about 100 million years after the planet’s formation, during which garnet was removed from material that rose up from the deep mantle. This episode implies large-scale reorganization in the martian mantle and thereby provides compelling support for overturn. We suggest that this event probably led to substantial re-melting in the deepest mantle, which may have influenced early martian processes such as the development of crustal dichotomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of the mantle overturn on the ɛ values in the source of nakhlites.
Figure 2: Schematic model representing the early evolution of Mars.
Figure 3: Evolution of the depletion field during overturn event.

Similar content being viewed by others

References

  1. Solomatov, V. S. & Stevenson, D. J. Non-fractional crystallization of a terrestrial magma ocean. J. Geophys. Res. 98, 5391–5406 (1993).

    Article  Google Scholar 

  2. Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997).

    Article  Google Scholar 

  3. Elkins-Tanton, L. T., Parmentier, E. M. & Hess, P. C. Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteorit. Planet. Sci. 38, 1753–1771 (2003).

    Article  Google Scholar 

  4. Elkins-Tanton, L. T., Hess, P. C. & Parmentier, E. M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005).

    Article  Google Scholar 

  5. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article  Google Scholar 

  6. Elkins-Tanton, L. T., Zaranek, S. E., Parmentier, E. M. & Hess, P. C. Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005).

    Article  Google Scholar 

  7. Harper, C. L. et al. Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267, 213–217 (1995).

    Article  Google Scholar 

  8. Treiman, A. H. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Chem. Erde-Geochem. 65, 203–296 (2005).

    Article  Google Scholar 

  9. Caro, G., Bourdon, B., Halliday, A. N. & Quitté, G. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–339 (2008).

    Article  Google Scholar 

  10. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Gyr) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  11. Debaille, V., Brandon, A. D., Yin, Q.-Z. & Jacobsen, B. Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007).

    Article  Google Scholar 

  12. Misawa, K., Shih, C.-Y., Wiesmann, H. & Nyquist, L. E. Crystallization and alteration ages of the Antarctic nakhlite Yamato 000593. Lunar Planet. Sci. Conf. XXXIV abstr. 1556 (2003).

  13. Shih, C.-Y., Nyquist, L. E. & Reese, Y. Rb–Sr and Sm–Nd isotopic studies of Antarctic nakhlite MIL 03346. Lunar Planet. Sci. Conf. XXXVII abstr. 1701 (2006).

  14. Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997).

    Article  Google Scholar 

  15. Foley, N. C. et al. The early differentiation history of Mars from 182W–142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005).

    Article  Google Scholar 

  16. Kleine, T. et al. 182Hf–182W isotope systematics of chondrites, eucrites, and Martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004).

    Article  Google Scholar 

  17. Blichert-Toft, J., Gleason, J. D., Telouk, P. & Albarède, F. The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system. Earth Planet. Sci. Lett. 173, 25–39 (1999).

    Article  Google Scholar 

  18. Wadhwa, M. & Crozaz, G. Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis. Geochim. Cosmochim. Acta 59, 3629–3645 (1995).

    Article  Google Scholar 

  19. Borg, L. E. et al. The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 67, 3519–3536 (2003).

    Article  Google Scholar 

  20. Bouvier, A., Blichert-Toft, J. & Albarède, F. Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet. Sci. Lett. 280, 285–295 (2009).

    Article  Google Scholar 

  21. Draper, D. S., Xirouchakis, D. & Agee, C. B. Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: Implications for the onset of majorite transition in the Martian mantle. Phys. Earth Planet. Inter. 139, 149–169 (2003).

    Article  Google Scholar 

  22. Bouvier, A., Vervoort, J. D. & Patchett, J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  23. Righter, K. & Shearer, C. K. Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars. Geochim. Cosmochim. Acta 67, 2497–2507 (2003).

    Article  Google Scholar 

  24. Halliday, A. N., Wänke, H., Birck, J. L. & Clayton, R. N. The accretion, composition and early differentiation of Mars. Space Sci. Rev. 96, 197–230 (2001).

    Article  Google Scholar 

  25. Bouvier, A. et al. Pb–Pb dating constraints on the accretion and cooling history of chondrites. Geochim. Cosmochim. Acta 71, 1583–1604 (2007).

    Article  Google Scholar 

  26. Bertka, C. & Fei, Y. Mineralogy of the Martian interior up to core–mantle boundary pressures. J. Geophys. Res. 102, 5251–5264 (1997).

    Article  Google Scholar 

  27. Debaille, V., Yin, Q.-Z., Brandon, A. D. & Jacobsen, B. Martian mantle mineralogy investigated by the 176Lu–176Hf and 147Sm–143Nd systematics of shergottites. Earth Planet. Sci. Lett. 269, 186–199 (2008).

    Article  Google Scholar 

  28. Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the Martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).

    Article  Google Scholar 

  29. Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

    Article  Google Scholar 

  30. Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis basin and the origin of the Martian crustal dichotomy. Nature 453, 1212–1215 (2008).

    Article  Google Scholar 

  31. Kiefer, W. S. Melting in the Martian mantle: Shergottite formation and implications for present-day mantle convection on Mars. Meteorit. Planet. Sci. 38, 1815–1832 (2003).

    Article  Google Scholar 

  32. Roberts, J. H. & Zhong, S. J. Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J. Geophys. Res. 109, E03009 (2004).

    Article  Google Scholar 

  33. Nyquist, L. E. et al. Ages and geologic histories of Martian meteorites. Space Sci. Rev. 96, 105–164 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out under a postdoctoral fellowship grant to V.D. at the Lunar and Planetary Institute, a NASA Cosmochemistry grant to A.D.B. (RTOP 344-31-72-06) and a NASA Cosmochemistry grant (NNX08AG57G) and Origins of Solar Systems grant (NNX09AC93G) to Q.-Z.Y. at UC Davis. We thank NIPR and the NASA Antarctic Meteorite Collection for providing samples for this study. A. Agranier, Y. Reese and C.-Y. Shih are thanked for their analytical support, and the Belgian Fonds National pour la Recherche Scientifique (FRS-FNRS) for present support to V.D. C.O’N. acknowledges ARC support. This is a UCD-ICP-MS contribution number no. 0023 and GEMOC no. 597.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to V. Debaille.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1000 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debaille, V., Brandon, A., O’Neill, C. et al. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nature Geosci 2, 548–552 (2009). https://doi.org/10.1038/ngeo579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing