Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism

Abstract

One of the five largest mass extinctions of the past 600 million years occurred at the boundary of the Triassic and Jurassic periods, 201.6 million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of CAMP basalts and T/J boundary fern proliferation.
Figure 2: Floral changes across the T/J boundary as reconstructed from pollen and spores.
Figure 3: A T/J boundary ‘dark zone’.
Figure 4: PAH in T/J boundary beds.

Similar content being viewed by others

References

  1. Raup, D. M. & Sepkoski, J. J. Jr Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Article  Google Scholar 

  2. Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon cycle perturbation: A link to initiation of massive volcanism. Geology 30, 251–254 (2002).

    Article  Google Scholar 

  3. McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390 (1999).

    Article  Google Scholar 

  4. McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M. & Surlyk, F. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33, 547–573 (2007).

    Article  Google Scholar 

  5. Marzoli, A. et al. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284, 616–618 (1999).

    Article  Google Scholar 

  6. Marzoli, A. et al. Synchrony of the Central Magmatic Province and the Triassic–Jurassic boundary and biotic crisis. Geology 32, 973–976 (2004).

    Article  Google Scholar 

  7. Beerling, D. J. & Berner, R. A. Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event. Glob. Biogeochem. Cycles 16, 10(11)–10(13) (2002).

    Article  Google Scholar 

  8. Quan, T. M., van de Schootbrugge, B., Field, P., Rosenthal, Y. & Falkowski, P. G. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic–Jurassic boundary. Glob. Biogeochem. Cycles 22, GB2014 (2008).

    Article  Google Scholar 

  9. van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled disaster species. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).

    Article  Google Scholar 

  10. Galli, M. T., Jadoul, F., Bernasconi, S. M. & Weissert, H. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: Evidence from a marine C-isotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 203–214 (2005).

    Article  Google Scholar 

  11. Galli, M. T., Jadoul, F., Bernasconi, S. M., Cirilli, S. & Weissert, H. Stratigraphy and palaeoenvironmental analysis of the Triassic–Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 52–70 (2007).

    Article  Google Scholar 

  12. van de Schootbrugge, B. et al. Carbon cycle perturbation and stabilization in the wake of the Triassic–Jurassic boundary mass-extinction event. Geochem. Geophys. Geosyst. 9, Q04028 (2008).

    Google Scholar 

  13. Fisher, M. J. & Dunay, R. E. Palynology and the Triassic/Jurassic boundary. Rev. Palaeobot. Palyno. 34, 129–135 (1981).

    Article  Google Scholar 

  14. Pedersen, K. R. & Lund, J. J. Palynology of the plant-bearing Rhaetian to Hettangian Kap Stewart formation, Scoresby Sund, East Greenland. Rev. Palaeobot. Palyno. 281, 1–69 (1980).

    Google Scholar 

  15. Ruhl, M., Kürschner, W. M. & Krystyn, L. Triassic–Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth Planet. Sci. Lett. 281, 169–187 (2009).

    Article  Google Scholar 

  16. Kürschner, W. M., Bonis, N. & Krysytn, L. Carbon isotope stratigraphy and palynostratigraphy of the Triassic–Jurassic transition in the Tiefengraben section—Northern Calcareous Alps (Austria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 257–280 (2007).

    Article  Google Scholar 

  17. Schuurman, W. L. Aspects of Late Triassic palynology. 2. Palynology of the Gres et Schiste a Avicula contorta and Argiles de Levallois (Rhaetian) of northeastern France and southern Luxemburg. Rev. Palaeobot. Palyno. 23, 159–253 (1977).

    Article  Google Scholar 

  18. De Graciansky, P.-C., Jacquin, T. & Hesselbo, S. P. in Mesozoic and Cenozoic Sequence Stratigraphy of European Basins Special Publication 60 (eds De Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P. R.) (SEPM, 1998).

  19. Olsen, P. E. et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic–Jurassic boundary. Science 296, 1305–1307 (2002).

    Article  Google Scholar 

  20. Lu, Y. & Deng, S. Triassic–Jurassic sporopollen assemblages on the southern margin of the Junggar Basin, Xinjiang and the T–J boundary. Acta Geol. Sin. 79, 15–28 (2005).

    Google Scholar 

  21. Lucas, S. G. & Tanner, L. H. The nonmarine Triassic–Jurassic boundary in the Newark Supergroup of eastern North America. Earth Sci. Rev. 84, 1–20 (2007).

    Article  Google Scholar 

  22. Götz, A. E., Ruckwied, K., Palfy, J. & Haas, J. Palynological evidence for synchronous changes within the terrestrial and marine realm at the Triassic–Jurassic boundary (Csövàr section, Hungary). Rev. Palaeobot. Palyno. 10.1016/j.revpalbo.2009.04.002 (2009).

  23. Rauscher, R., Hilly, J., Hanzo, M. & Marchal, C. Palynologie des couches de passage du Trias superieure au Lias dans l’est du Bassin Parisien. Problemes de datation du ‘Rhetien’ de Lorraine. Sci. Geol. Bull. 48, 159–185 (1995).

    Article  Google Scholar 

  24. Gomez, J. J., Goy, A. & Barron, E. Events around the Triassic–Jurassic boundary in northern and eastern Spain: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 89–110 (2007).

    Article  Google Scholar 

  25. Zhang, W. & Grant-Mackie, J. A. Late Triassic–Early Jurassic palynofloral assemblages from Murihiku strata of New Zealand and comparisons with China. J. R. Soc. New Zealand 31, 575–683 (2001).

    Article  Google Scholar 

  26. Page, C. N. Ecological strategies in fern evolution: A neopteridological overview. Rev. Palaeobot. Palyno. 119, 1–33 (2002).

    Article  Google Scholar 

  27. Rothwell, G. W. Pteridophytic evolution: An often underappreciated phytological success story. Rev. Palaeobot. Palyno. 90, 209–222 (1996).

    Article  Google Scholar 

  28. Collinson, M. E. The ecology of Cainozoic ferns. Rev. Palaeobot. Palyno. 119, 51–68 (2002).

    Article  Google Scholar 

  29. Lenz, O. K., Wilde, V. & Riegel, W. Recolonization of a Middle Eocene volcanic site: Quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev. Palaeobot. Palyno. 145, 217–242 (2007).

    Article  Google Scholar 

  30. Jolley, D. W., Bell, B. R., Williamson, I. T. & Prince, I. Syn-eruption vegetation dynamics, paleosurfaces and structural controls on lava field vegetation: An example from the Palaeogene Staffa Formation, Mull Lava Field, Scotland. Rev. Palaeobot. Palyno. 153, 19–33 (2009).

    Article  Google Scholar 

  31. Ahlberg, A., Olsson, I. & Simkevicius, P. Triassic–Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden. Sediment. Geol. 161, 15–29 (2003).

    Article  Google Scholar 

  32. Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet. Sci. Lett. 248, 518–532 (2006).

    Article  Google Scholar 

  33. Chenet, A.-L., Fluteau, F. & Courtillot, V. Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth Planet. Sci. Lett. 236, 721–731 (2005).

    Article  Google Scholar 

  34. Guex, J., Bartolini, A., Atudorei, V. & Taylor, D. High-resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada). Earth Planet. Sci. Lett. 225, 29–41 (2004).

    Article  Google Scholar 

  35. Chenet, A.-L., Fluteau, F., Courtillot, V., Gerard, M. & Subbarao, K. V. Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113, B04101 (2008).

    Article  Google Scholar 

  36. Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S. 40 K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet. Sci. Lett. 263, 1–15 (2007).

    Article  Google Scholar 

  37. Halmer, M. M., Schmincke, H.-U. & Graf, H.-F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years. J. Volcanol. Geothermal Res. 115, 511–528 (2002).

    Article  Google Scholar 

  38. Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).

    Article  Google Scholar 

  39. Geptner, A. R., Alekseeva, T. A. & Pikovskii, Y. I. Polycyclic aromatic hydrocarbons in Holocene sediments and tephra of Iceland (composition and distribution features). Lithol. Mineral Resour. 37, 148–156 (2002).

    Article  Google Scholar 

  40. Heunisch, C., Luppold, F. W., Reinhardt, L. & Röhling, H.-G. Palynofazies, Bio-, und Lithostratigraphie im Grenzbereich Rhät/Lias in der Bohrung Mariental I (Lappwaldmulde, Ostniedersachsen). Zeitschrift der Deutschen Geologischen Gesellschaft (in the press).

  41. Freeman, D. J. & Cattell, F. C. R. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 24, 1581–1585 (1990).

    Article  Google Scholar 

  42. Robbins, E. I., Wilkes, G. P. & Textoris, D. A. in Triassic–Jurassic Rifting: Continental Break-up and the Origin of the Atlantic Ocean and Passive Margins (ed. Manspeizer, W.) 649–682 (Part B, Developments in Geotectonics, Elsevier, 1988).

    Book  Google Scholar 

  43. van Houten, F. B. Contact metamorphic mineral assemblages, Late Triassic Newark Group, New Jersey. Contrib. Mineral. Petrol. 30, 1–14 (1971).

    Article  Google Scholar 

  44. McHone, J. G. The Central Atlantic Magmatic Province 1–13 (American Geophysical Union, 2002).

    Google Scholar 

  45. Lund, J. J. Rhaetian to Pliensbachian palynostratigraphy of the central part of the NW German Basin exemplified by the Eitzendorf 8 well. Cour. Forsch. Inst. Senckenberg 241, 69–83 (2003).

    Google Scholar 

  46. Lund, J. J. Rhaetic to lower Jurassic palynology of the onshore southeastern North Sea Basin. Danmarks Geologiske Undersogelse II Raekke 109, 1–129 (1977).

    Google Scholar 

  47. Lindström, S. & Erlström, M. The late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 339–372 (2006).

    Article  Google Scholar 

  48. Traverse, A. Paleopalynology (Unwin Hyman, 1988).

    Google Scholar 

Download references

Acknowledgements

We thank C. Christ (Frankfurt University) for her help with the quantification of the PAH and E. Gottwald (Frankfurt University) for continued support in terms of rock preparation. Discussions with H. Visscher (Utrecht University), J. Payne (Stanford University), H. Jenkyns and S. Hesselbo (Oxford University) helped to shape ideas presented here. J. van Konijnenburg-van Cittert (Utrecht University) is warmly thanked for her advice on palaeobotanical affinities of identified palynomorphs. B.v.d.S. acknowledges financial support from the German Science Foundation (DFG) project Scho-1216/2. S.L. acknowledges financial support from the Swedish Geological Survey (SGU) and the Crafoord Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.v.d.S., S.L. and C.H. were responsible for generating the palynological data from Mingolsheim, Höllviken-2 and Mariental, respectively, and were involved in writing. W.P. analysed samples from Mariental for biomarkers and assisted with the interpretation. H.-G.R. was responsible for drilling the Mariental core and provided important lithologic and stratigraphic information. R.P. generated the clay mineral data and helped with the discussion. J.P. and S.R. contributed on the palaeoecological and biostratigraphic interpretations. J.F., T.M.Q., Y.R. and P.G.F. contributed to the text.

Corresponding author

Correspondence to B. van de Schootbrugge.

Supplementary information

Supplementary Fig. S1

Supplementary Information (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Schootbrugge, B., Quan, T., Lindström, S. et al. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geosci 2, 589–594 (2009). https://doi.org/10.1038/ngeo577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing