Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of magma injection in localizing black-smoker activity

Abstract

Black-smoker hydrothermal systems at mid-ocean ridges are often driven by heat loss from a crustal magma chamber1,2,3, but black-smoker systems have not been detected above all magma chambers4,5. The high fluxes of heat recorded at black-smoker systems require a thin, metre-scale conductive boundary layer at the top of the magma chamber, separating hydrothermal fluids from magma2,6. Extensive seismicity above the magma chambers7,8,9,10,11 has been attributed to stresses from hydrothermal cooling8,9,10,12. The presence of high-temperature hydrothermal systems has previously been linked with episodes of magma chamber inflation2,6,13,14, but the exact mechanism remained to be clarified. Here we analyse seismic data for the Endeavour segment of the Juan de Fuca ridge—a site of long-lived hydrothermal activity—recorded by seismometers located beneath the sea floor. Earthquake focal mechanisms derived from the data reveal a transition from normal faulting above the mid-crustal magma chamber to reverse faulting on either flank. This pattern of faulting is consistent with stress perturbations resulting from the emplacement of pressurized magma that forms a thin sill. We suggest that the ongoing recharge of magma into a crustal magma chamber not only replenishes the heat source2,6,14, but also helps maintain a thin conductive boundary layer that would otherwise thicken owing to water–rock interactions and crystallization at the chamber roof.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bathymetric maps showing the seismic network and earthquake epicentres.
Figure 2: Along-axis vertical cross-section showing hypocentres.
Figure 3: Bathymetric map showing focal mechanisms.
Figure 4: Cross-section of the focal mechanisms and stress perturbations from a pressurized crack.

Similar content being viewed by others

References

  1. Cann, J. R. & Strens, M. R. Black smokers fuelled by freezing magma. Nature 298, 147–149 (1982).

    Article  Google Scholar 

  2. Lowell, R. P. & Germanovich, L. N. On the temporal evolution of high-temperature hydrothermal systems at ocean ridge crests. J. Geophys. Res. 99, 565–575 (1994).

    Article  Google Scholar 

  3. Van Ark, E. M. et al. Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity. J. Geophys. Res. 112, B02401 (2007).

    Article  Google Scholar 

  4. Haymon, R. M. et al. Hydrothermal vent distribution along the East Pacific Rise crest (909′–54′ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet. Sci. Lett. 102, 513–534 (1991).

    Article  Google Scholar 

  5. Hooft, E. E. E., Detrick, R. S. & Kent, G. M. Seismic structure and indicators of magma budget along the Southern East Pacific Rise. J. Geophys. Res. 102, 27319–27340 (1997).

    Article  Google Scholar 

  6. Liu, L. & Lowell, R. P. Models of hydrothermal heat output from a convecting, crystallizing, replenished magma chamber beneath an oceanic spreading centre. J. Geophys. Res. 114, B02102 (2009).

    Article  Google Scholar 

  7. McClain, J. S. et al. Seismicity and tremor in a submarine hydrothermal field: The northern Juan de Fuca Ridge. Geophys. Res. Lett. 20, 1883–1886 (1993).

    Article  Google Scholar 

  8. Wilcock, W. S. D., Archer, S. D. & Purdy, G. M. Microearthquakes on the Endeavour segment of the Juan de Fuca Ridge. J. Geophys. Res. 107, 2336 (2002).

    Article  Google Scholar 

  9. Sohn, R. A., Hildebrand, J. A. & Webb, S. C. A microearthquake survey of the high-temperature vent fields on the volcanically active East Pacific Rise. J. Geophys. Res. 104, 25,367–25,377 (1999).

    Article  Google Scholar 

  10. Sohn, R. A., Barclay, A. H. & Webb, S. C. Microearthquakes patterns following the 1998 eruption of Axial Volcano, Juan de Fuca Ridge: Mechanical relaxation and thermal strain. J. Geophys. Res. 109, B01101 (2004).

    Article  Google Scholar 

  11. Tolstoy, M. et al. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451, 181–185 (2008).

    Article  Google Scholar 

  12. Lister, C. R. B. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A., Bostrom, K., Laubier, L. & Smith, K. L. Jr) 141–168 (Plenum, 1983).

    Book  Google Scholar 

  13. Singh, S. C. et al. Seismic evidence for a hydrothermal layer above the solid roof of the axial magma chamber at the southern East Pacific Rise. Geology 27, 219–222 (1999).

    Article  Google Scholar 

  14. Humphris, S. E. & Cann, J. R. Constraints on the energy and chemical balances of the modern TAG and ancient Cyprus seafloor sulfide deposits. J. Geophys. Res. 105, 28477–28488 (2000).

    Article  Google Scholar 

  15. Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).

    Article  Google Scholar 

  16. Johnson, H. P. et al. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca Ridge mid-ocean ridge. Nature 407, 174–177 (2000).

    Article  Google Scholar 

  17. Lilley, M. D., Butterfield, D. A., Lupton, J. E. & Olson, E. J. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881 (2003).

    Article  Google Scholar 

  18. Seyfried, W. E. Jr, Seewald, J. S., Berndt, M. E., Ding, K. & Foustoukos, D. I. Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of the June 1999 seismic events. J. Geophys. Res. 108, 2429 (2003).

    Article  Google Scholar 

  19. Butterfield, D. A. et al. Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: Phase separation and brine loss. J. Geophys. Res. 99, 9561–9583 (1994).

    Article  Google Scholar 

  20. Waldhauser, F. HypoDD—a program to compute double-difference hypocenter locations US Geol. Surv. Open File Rep. 01-113 (2001).

  21. Thompson, W. J. et al. Heat flux from the Endeavour segment of the Juan de Fuca Ridge. Eos 86, Fall Meet. Suppl. abstr. T31A-0489 (2005).

  22. Hardebeck, J. L. & Shearer, P. M. A new method for determining first-motion focal mechanisms. Bull. Seismol. Soc. Am. 92, 2264–2276 (2002).

    Article  Google Scholar 

  23. Rubin, A. M. Dike-induced faulting and graben subsidence in volcanic rift zones. J. Geophys. Res. 97, 1839–1858 (1992).

    Article  Google Scholar 

  24. Kent, G. M., Harding, A. J. & Orcutt, J. A. Evidence for a smaller magma chamber beneath the East Pacific Rise at 930′ N. Nature 344, 650–653 (1990).

    Article  Google Scholar 

  25. Pollard, D. D. & Segall, P. in Fracture Mechanics of Rock (ed. Atkinson, B. K.) 277–349 (Academic, 1987).

    Book  Google Scholar 

  26. Buck, W. R., Einarsson, P. & Brandsdottir, B. Tectonic stress and magma chamber size as controls on dike propagation: Constraints from the 1975–1984 Krafla rifting episode. J. Geophys. Res. 111, B12404 (2006).

    Article  Google Scholar 

  27. Chadwick, W. W. Jr. et al. Vertical deformation monitoring at axial seamount since its 1998 eruption using deep-sea pressure sensors. J. Volcanol. Geotherm. Res. 150, 313–327 (2006).

    Article  Google Scholar 

  28. Tolstoy, M. et al. A sea-floor spreading event captured by seismometers. Science 314, 1920–1922 (2006).

    Article  Google Scholar 

  29. Wilcock, W. S. D. & Delaney, J. R. Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts? Earth Planet. Sci. Lett. 145, 49–64 (1996).

    Article  Google Scholar 

  30. Lister, C. R. B. Differential thermal stress in the Earth. Geophys. J. R. Astron. Soc. 86, 319–330 (1986).

    Article  Google Scholar 

  31. Klein, F. W. User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes US Geol. Surv. Open File Rep. 02-171 (2002).

Download references

Acknowledgements

We thank J. Delaney and D. Kelley for their leadership of the programme that included this experiment; D. Bowman, J. Parker, H. Patel, C. Schmidt and student participants in a Friday Harbor Laboratories research apprenticeship for assistance with the initial data analysis and R. Lowell and R. Reves-Sohn for reviews that improved the manuscript. The W. M. Keck Foundation supported this research.

Author information

Authors and Affiliations

Authors

Contributions

P.R.M., D.S.S. and T.M.R. developed and prepared the seismometers. All the authors participated in the experiment at sea. W.S.D.W., E.E.E.H., D.R.T. and A.H.B. oversaw the initial data analysis. W.S.D.W. completed the analysis and wrote the paper, with editing from the other authors.

Corresponding author

Correspondence to William S. D. Wilcock.

Supplementary information

Supplementary Methods

Supplementary Information (PDF 704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcock, W., Hooft, E., Toomey, D. et al. The role of magma injection in localizing black-smoker activity. Nature Geosci 2, 509–513 (2009). https://doi.org/10.1038/ngeo550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing