Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Iron isotope fractionation in the Earth’s lower mantle

Abstract

Understanding the distribution of iron isotopes within planetary bodies can help constrain their histories of accretion and differentiation1,2,3. A large fraction of the iron in the silicate Earth is dissolved in ferropericlase and ferroperovskite—mineral phases that make up the bulk of the lower mantle4. These phases have distinct crystallographic structures and iron resides in them in multiple spin states; they are therefore likely to partition iron isotopes differently. Here we use density functional methods to calculate the equilibrium iron isotope composition of these phases at a range of temperatures and pressures, including those thought to exist near the core–mantle boundary. We find that the iron isotopic composition of ferropericlase strongly depends on the spin state of iron. At pressures near the base of the mantle, the low-spin state is enriched in heavy isotopes relative to the high-spin state. In contrast, for ferroperovskite, our calculations suggest that the isotopic composition is almost independent of spin state. Our results warrant a careful search for a pressure-dependent isotopic signature in samples brought up by mantle plumes and in materials subjected to lower mantle pressures and temperatures in the laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core atoms of molecular clusters.
Figure 2: Development of an equilibrium lower-mantle isotopic profile.
Figure 3: Cumulative value of 103lnβ as a function of vibrational frequency.

Similar content being viewed by others

References

  1. Beard, B. L. & Johnson, C. M. Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochim. Cosmochim. Acta 68, 4727–4743 (2004).

    Article  Google Scholar 

  2. Weyer, S. et al. Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251–264 (2005).

    Article  Google Scholar 

  3. Poitrasson, F. Does planetary differentiation really fractionate iron isotopes? Earth Planet. Sci. Lett. 256, 484–492 (2007).

    Article  Google Scholar 

  4. Kesson, S. E., FitzGerald, J. D. & Shelley, J. M. Mineralogy and dynamics of a pyrolite lower mantle. Nature 393, 252–255 (1998).

    Article  Google Scholar 

  5. Polyakov, V. B. Equilibrium iron isotope fractionation at core–mantle boundary conditions. Science 323, 912–914 (2009).

    Article  Google Scholar 

  6. Badro, J. et al. Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science 300, 789–791 (2003).

    Article  Google Scholar 

  7. Cohen, R. E., Mazin, I. I. & Isaak, D. G. Magnetic collapse in transition metal oxides at high pressure: Implications for the Earth. Science 275, 654–657 (1997).

    Article  Google Scholar 

  8. Speziale, S. et al. Iron spin transition in Earth’s mantle. Proc. Natl Acad. Sci. 102, 17918–17922 (2005).

    Article  Google Scholar 

  9. Tsuchiya, T., Wentzcovitch, R. M., da Silva, C. R. S. & de Gironcoli, S. Spin transition in magnesiowustite in Earth’s lower mantle. Phys. Rev. Lett. 96, 198501 (2006).

    Article  Google Scholar 

  10. McCammon, C. et al. Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nature Geosci. 1, 684–687 (2008).

    Article  Google Scholar 

  11. Lin, J.-F. et al. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geosci. 1, 688–691 (2008).

    Article  Google Scholar 

  12. Umemoto, K., Wentzcovitch, R. M., Yu, Y. G. & Requist, R. Spin transition in (Mg,Fe)SiO3 perovskite under pressure. Earth Planet. Sci. Lett. 276, 198–206 (2008).

    Article  Google Scholar 

  13. Stackhouse, S. Mineral physics: The spin deep within. Nature Geosci. 1, 648–650 (2008).

    Article  Google Scholar 

  14. Swart, M. Accurate spin-state energies for iron complexes. J. Chem. Theor. Comput. 4, 2057–2066 (2008).

    Article  Google Scholar 

  15. Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange. J. Chem. Phys. 15, 261–267 (1947).

    Article  Google Scholar 

  16. Miller, G. H., Stolper, E. M. & Ahrens, T. J. The equation of state of a molten komatiite 2. Application to komatiite petrogenesis and the Hadean mantle. J. Geophys. Res. 96, 11849–11864 (1991).

    Article  Google Scholar 

  17. Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005).

    Article  Google Scholar 

  18. Sweeney, J. S. & Heinz, D. L. Melting of iron-magnesium-silicate perovskite. Geophys. Res. Lett. 20, 855–858 (1993).

    Article  Google Scholar 

  19. Agnor, C. & Asphaug, E. Accretion efficiency during planetary collisions. Astrophys. J. 613, L157–L160 (2004).

    Article  Google Scholar 

  20. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article  Google Scholar 

  21. Poitrasson, F., Halliday, A. N., Lee, D.-C., Levasseur, S. & Teutsch, N. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet. Sci. Lett. 223, 253–266 (2004).

    Article  Google Scholar 

  22. Schoenberg, R. & von Blanckenburg, F. Modes of planetary-scale Fe isotope fractionation. Earth Planet. Sci. Lett. 252, 342–359 (2006).

    Article  Google Scholar 

  23. Dauphas, N., Craddock, P. R., Bennett, V. & Ohmenstetter, D. The iron isotopic composition of the silicate Earth: Clues from chondrites, peridotites, and eoarchean magmas. Lunar Planet. Sci. Conf. 40, A1769 (2009).

    Google Scholar 

  24. Holzapfel, C., Rubie, D. C., Frost, D. J. & Langenhorst, F. Fe–Mg interdiffusion in (Mg,Fe)SiO3 perovskite and lower mantle reequilibration. Science 309, 1707–1710 (2005).

    Article  Google Scholar 

  25. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  Google Scholar 

  26. Brandon, A. D., Walker, R. J., Morgan, J. W., Norman, M. D. & Prichard, H. M. Coupled 186Os–187Os evidence for core–mantle interaction. Science 280, 1570–1573 (1998).

    Article  Google Scholar 

  27. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: Isotopic evidence. Science 256, 517–520 (1992).

    Article  Google Scholar 

  28. Vanpeteghem, C. B. et al. Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Phys. Earth Planet. Inter. 155, 96–103 (2006).

    Article  Google Scholar 

  29. Iitaka, T., Hirose, K., Kawamura, K. & Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430, 442–445 (2004).

    Article  Google Scholar 

  30. Garai, J. Universal P–V–T equation of state for periclase. Preprint at <http://arxiv.org/abs/0805.0249v1> (2008).

Download references

Acknowledgements

This work was financially supported by the US Department of Energy, Division of Basic Energy Sciences, grant DE-FG02-04ER15498 to J.R.R, and NASA Cosmochemistry (NNX08AG57G) and Origins of Solar Systems (NNX09AC93G) grants to Q.-Z.Y. We thank F. Poitrasson for helpful suggestions on the manuscript and V. B. Polyakov for many discussions and sharing his data presented in ref. 5.

Author information

Authors and Affiliations

Authors

Contributions

The research problem was identified by Q.-Z.Y. and J.R.R. J.R.R. designed the protocol and carried out the electronic structure calculations. The paper was written by J.R.R. and Q.-Z.Y.

Corresponding authors

Correspondence to James R. Rustad or Qing-Zhu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rustad, J., Yin, QZ. Iron isotope fractionation in the Earth’s lower mantle. Nature Geosci 2, 514–518 (2009). https://doi.org/10.1038/ngeo546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing