Identifying the causes of sea-level change

Article metrics


Global mean sea-level change has increased from a few centimetres per century over recent millennia to a few tens of centimetres per century in recent decades. This tenfold increase in the rate of rise can be attributed to climate change through the melting of land ice and the thermal expansion of ocean water. As the present warming trend is expected to continue, global mean sea level will continue to rise. Here we review recent insights into past sea-level changes on decadal to millennial timescales and how they may help constrain future changes. We find that most studies constrain global mean sea-level rise to less than one metre over the twenty-first century, but departures from this global mean could reach several decimetres in many areas. We conclude that improving estimates of the spatial variability in future sea-level change is an important research target in coming years.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mean rate of sea-surface height change during October 1992 to May 2007, determined from satellite altimetry measurements.
Figure 2: Sea-level curves derived from tide-gauge data using the 'virtual station' method95.
Figure 3: Relative sea level (RSL) reconstructed from the geological record at the five localities shown in the inset.


  1. 1

    Stern, N. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

  2. 2

    Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 747–845 (Cambridge Univ. Press, 2007).

  3. 3

    Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).

  4. 4

    Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st century sea-level rise. Science 321, 1340–1343 (2008).

  5. 5

    Berger, W. H. Sea level in the late Quaternary: patterns of variation and implications. Int. J. Earth Sci. 97, 1143–1150 (2008).

  6. 6

    Rohling, E. J. et al. High rates of sea-level rise during the last interglacial period. Nature Geosci. 1, 38–42 (2008).

  7. 7

    Lombard, A. et al. Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet. Sci. Lett. 254, 194–202 (2007).

  8. 8

    Lyman, J. M., Willis, J. K. & Johnson, G. C. Recent cooling of the upper ocean. Geophys. Res. Lett. 33, L18604 (2006).

  9. 9

    Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. 34, L01610 (2007).

  10. 10

    Willis, J. K., Lyman, J. K., Johnson, G. C. & Gilson, J. Correction to “Recent cooling of the upper ocean”. Geophys. Res. Lett. 34, L16601 (2007).

  11. 11

    Wijffels, S. E. et al. Changing expendable bathythermograph fall-rates and their impact on estimates of thermosteric sea level rise. J. Clim. 21, 5657–5672 (2008).

  12. 12

    Willis, J. K., Lyman, J. M., Johnson, C. G. & Gilson, J. In situ data biases and recent ocean heat content variability. J. Atmos. Ocean. Tech. 26, 846–852 (2009).

  13. 13

    Dickey, J. O., Marcus, S. L. & Willis, J. K. Ocean cooling: Constraints from changes in Earth's dynamic oblateness (J2) and altimetry. Geophys. Res. Lett. 35, L18608 (2008).

  14. 14

    Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally-averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res. 113, C06015 (2008).

  15. 15

    Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

  16. 16

    Cazenave, A. et al. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Change 65, 83–88 (2009).

  17. 17

    Palmer, M. D., Haines, K., Tett, S. F. B. & Ansell, T. J. Isolating the signal of global warming. Geophys. Res. Lett. 34, L23610 (2007).

  18. 18

    Chambers, D. P., Tamisiea, M. E., Nerem, R. S. & Ries, J. C. Effects of ice melting on GRACE observations of ocean mass trends. Geophys. Res. Lett. 34, L05610 (2007).

  19. 19

    Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006).

  20. 20

    Chambers, D. P. Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett. 33, L17603 (2006).

  21. 21

    Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 113, B08410 (2008).

  22. 22

    Mitchum, G. T. An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. 23, 145–166 (2000).

  23. 23

    Leuliette, E. W., Nerem, R. S. & Mitchum, G. T. Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar. Geod. 27, 79–94 (2004).

  24. 24

    Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1094 (2008).

  25. 25

    Woodworth, P. L. & Player, R. The permanent service for mean sea level: an update to the 21st century. J. Coastal Res. 19, 287–295 (2003).

  26. 26

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

  27. 27

    Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001).

  28. 28

    Plag, H. Recent relative sea-level trends: an attempt to quantify the forcing factors. Phil. Trans. R. Soc. A 364, 821–844 (2006).

  29. 29

    Douglas, B. C. Concerning evidence for fingerprints of glacial melting. J. Coastal. Res. 24, 218–227 (2008).

  30. 30

    Wunsch, C., Ponte, R. M. & Heimbach, P. Decadal trends in sea level patterns: 1993–2004 J. Clim. 20, 5889–5911 (2007).

  31. 31

    Gregory, J. M., Banks, H. T, Stott, P. A., Lowe, J. A. & Palmer, M. D. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett. 31, L15312 (2004).

  32. 32

    Achuta Rao, K. M. et al. Simulated and observed variability in ocean temperature and heat content. Proc. Natl Acad. Sci. USA 204, 10768–10773 (2007).

  33. 33

    Marcos, M. & Tsimplis, M. N. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys. Res. Lett. 34, L01604 (2007).

  34. 34

    Cabanes, C., Huck, T. & de Verdiere, A. C. Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J. Phys. Oceanogr. 36, 1739–1750 (2006).

  35. 35

    Stammer, D. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 113, C06022 (2008).

  36. 36

    Munk, W. Twentieth century sea level: an enigma. Proc. Natl Acad. Sci. USA 99, 6550–6555 (2002).

  37. 37

    Mitrovica, J. X., Wahr, J., Matsuyama, I., Paulson, A. & Tamisiea, M. E. Reanalysis of ancient eclipse, astronomic and geodetic data: A possible route to solving the enigma of global sea-level rise. Earth. Planet. Sci. Lett. 243, 390–399 (2006).

  38. 38

    Wöppelmann, G., Miguez, B. M., Bouin, M. & Altamimi, Z. Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide Glob. Planet. Change 57, 396–406 (2007).

  39. 39

    Holgate, S. On the decadal rates of sea level change during the twentieth century. Geophys. Res. Lett. 34, L01602 (2007).

  40. 40

    Miller, L. & Douglas, B. C. Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys. Res. Lett. 34, L16602 (2007).

  41. 41

    Woodworth, P. L. et al. Evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Climatol. 10.1002/joc.1771 (in the press).

  42. 42

    Shennan, I. & Horton, B. P. Holocene land- and sea-level changes in Great Britain. J. Quat. Sci. 17, 511–526 (2002).

  43. 43

    Gehrels, W. R., Milne, G. A., Kirby, J. R., Patterson, R. T. & Belknap, D. F. Late Holocene sea-level changes and isostatic crustal movements in Atlantic Canada. Quat. Int. 120, 79–89 (2004).

  44. 44

    Donnelly, J. P., Cleary, P., Newby, P. & Ettinger, R. Coupling instrumental and geological records of sea-level change: Evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys. Res. Lett. 31, L05203 (2004).

  45. 45

    Gehrels, W. R. et al. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quat. Sci. Rev. 24, 2083–2100 (2005).

  46. 46

    Gehrels, W. R., Hayward, B. W., Newnham, R. M. & Southall, K. E. A 20th century sea-level acceleration in New Zealand. Geophys. Res. Lett. 35, L02717 (2008).

  47. 47

    Gehrels, W. R. et al. Rapid sea-level rise in the North Atlantic Ocean since the first half of the 19th century. Holocene 16, 948–964 (2006).

  48. 48

    Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: a numerical calculation. Quat. Res. 9, 265–287 (1978).

  49. 49

    Peltier, W. R. Postglacial variations in the level of the sea: implications for climate dynamics and solid-earth geophysics. Rev. Geophys. 36, 603–689 (1998).

  50. 50

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

  51. 51

    CLIMAP Project Members Seasonal reconstruction of the Earth's surface at the Last Glacial Maximum (Map Chart Ser. MC-36, Geol. Soc. Am., 1981).

  52. 52

    Mitrovica, J. X. & Milne, G. A. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002).

  53. 53

    Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, 405–410 (1990).

  54. 54

    Hanebuth, T., Stategger, K. & Grootes, P. Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. Science 288, 1033–1035 (2000).

  55. 55

    Carlson, A. E. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geosci. 1, 620–624 (2008).

  56. 56

    Jansen, E. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 433–497 (Cambridge Univ. Press, 2007).

  57. 57

    Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000).

  58. 58

    Otto-Bliesner, B. L. et al. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

  59. 59

    Sherer, R. P. et al. Pleistocene collapse of the West Antarctic ice sheet. Science 281, 82–85 (1998).

  60. 60

    Overpeck, J. T. et al. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 1747–1750 (2006).

  61. 61

    Dahl Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).

  62. 62

    Tarasov, L. & Peltier, W. R. Greenland glacial history and local geodynamic consequences. Geophys. J. Int. 150, 198–229 (2002).

  63. 63

    Simpson, M. J. R., Milne G. A., Huybrechts, P. & Long. A. J. Calibrating a glaciological model of the Greenland ice sheet from the last glacial maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. (in the press).

  64. 64

    Gehrels, W. R. Sea-level changes since the Last Glacial Maximum: An appraisal of the IPCC Fourth Assessment Report. J. Quat. Sci. 10.1002/jqs.1273 (in the press).

  65. 65

    Bindoff, N. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 385–432 (Cambridge Univ. Press, 2007).

  66. 66

    Lambeck, K., Anzidei, M., Antonioli, F., Benini, A. & Esposito, A. Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth Planet. Sci. Lett. 224, 563–575 (2004).

  67. 67

    Nakada, M. & Lambeck, K. The melting history of the late Pleistocene Antarctic ice sheet. Nature 33, 36–40 (1988).

  68. 68

    Long, A. J., Roberts, D. H. & Rasch, M. New observations on the relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt. Quat. Res. 60, 162–171 (2003).

  69. 69

    Mikkelsen, M., Kuijpers, A. & Arneborg, J. The Norse in Greenland and late Holocene sea-level change. Polar Rec. 44, 45–50 (2008).

  70. 70

    Sparrenbom, C. J., Bennike, O., Björck, S. & Lambeck, K. Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35, 171–187 (2006).

  71. 71

    Weidick, A., Kelly, M. & Bennike, O. Late Quaternary development of the southern sector of the Greenland ice sheet, with particular reference to the Qassimiut lobe. Boreas 33, 284–299 (2004).

  72. 72

    Das, S. B. & Alley, R. B. Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica. J. Geophys. Res. 113, D02112 (2008).

  73. 73

    Stone, J. O. et al. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99–102 (2003).

  74. 74

    Johnson, J. S., Bentley, M. J. & Gohl, K. First exposure ages from the Amundsen Sea embayment, West Antarctica: The late Quaternary context for recent thinning of Pine Island, Smith, and Pope Glaciers. Geology 36, 223–226 (2008).

  75. 75

    Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci. 17, 541–553 (2005).

  76. 76

    Gehrels, W. R. Middle and late Holocene sea-level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat. Quat. Res. 52, 350–359 (1999).

  77. 77

    Goodwin, I. D. & Harvey, N. Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar. Geol. 253, 14–25 (2008).

  78. 78

    van de Plassche, O., van der Borg, K. & de Jong, A. F. M. Sea level-climate correlation during the past 1400 yr. Geology 26, 319–322 (1998).

  79. 79

    Gehrels, W. R. et al. Late Holocene sea-level changes and isostasy in western Denmark. Quat. Res. 66, 288–302 (2006).

  80. 80

    Brovkin, V., Kim, J.-H., Hofmann, M. & Schneider, R. A lowering effect of reconstructed Holocene changes in sea surface temperatures on the atmospheric CO2 concentration. Glob. Biogeochem. Cycles 22, GB1016 (2008).

  81. 81

    Clark, P. U., Mitrovica, J. X., Milne, G. A. & Tamisiea, M. E. Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295, 2438–2441 (2002).

  82. 82

    Katsman, C. A., Hazeleger, W., Drijfhout, S. S., van Oldenborgh, G. J. & Burgers, G. Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Climatic Change 91, 351–374 (2008).

  83. 83

    Tornqvist, T. E., Bick, S. J., van der Borg, K. & de Jong, A. F. M. How stable is the Mississippi delta? Geology 34, 697–700 (2006).

  84. 84

    Yin, J., Schlesinger, M. E. & Stouffer, R. J. Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geosci. 2, 262–266 (2009).

  85. 85

    Mitrovica, J. X., Gomez, N. & Clark, P. U. The sea-level fingerprint of West Antarctic collapse. Science 323, 753 (2009).

  86. 86

    Church, J. A. et al. Understanding global sea levels : past, present and future. Sustain. Sci. 3, 9–22 (2008).

  87. 87

    Cazenave, A., Lombard, A. & Llovel, W. Present-day sea level rise: A synthesis. C. R. Geosci. 340, 761–770 (2008).

  88. 88

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

  89. 89

    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).

  90. 90

    Arz, H. W., Lamy, F., Ganopolsky, A., Nowaczyk, N. & Pätzold, J. Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat. Sci. Rev. 26, 312–323 (2007).

  91. 91

    Fairbanks, R. G. A. 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

  92. 92

    Yokoyama, Y., Lambeck, K., de Deckker, P., Johnston, P. & Fifield, K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).

  93. 93

    Shennan, I., Hamilton, S., Hillier, C., Woodroffe, S. A 16,000-year record of near-field relative sea-level changes, northwest Scotland, United Kingdom. Quat. Int. 133–134, 95–106 (2005).

  94. 94

    Laborel, J. & Laborel-Deguen, F. Biological indicators of Holocene sea-level and climatic variations on rocky coasts of tropical and subtropical regions. Quat. Int. 31, 53–60 (1996).

  95. 95

    Jevrejeva, S., Grinsted, A., Moore, J. C. & Holgate, S. J. Nonlinear trends and multiyear cycles in sea level records. J. Geophys. Res. 111, C09012 (2006).

  96. 96

    Woodroffe, S. A. Testing models of mid to late Holocene sea-level change, North Queensland, Australia. Quat. Sci. Rev. j.quascirev.2009.05.004 (in the press).

  97. 97

    Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int. 134, 102–144 (1998).

  98. 98

    Farrell, W. E. & Clark, J. T. On postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

  99. 99

    Tamisiea, M. E., Mitrovica, J. X., Davis, J. L. & Milne, G. A. Long wavelength sea level and solid surface perturbations driven by polar ice mass variations: fingerprinting Greenland and Antarctic ice sheet flux. Space Sci. Rev. 108, 81–93 (2003).

  100. 100

    Berge-Nguyen, M. et al. Reconstruction of past decades sea level using thermosteric sea level, tide gauge, satellite altimetry and ocean reanalysis data. Glob. Planet. Change 62, 1–13 (2008).

Download references


This article stemmed from a meeting hosted by the Geological Society of London in September 2008, and we express our gratitude to all who attended and particularly to those who gave presentations. We acknowledge support from the Geological Society, the Permanent Service for Mean Sea Level, the Royal Meteorological Society and the Challenger Society. This paper is a contribution to IGCP Project 495 (Late Quaternary Land–Ocean Interactions: Driving Mechanisms and Coastal Responses) and to the North and West Europe working group of the INQUA commission on Coastal and Marine Processes. Finally, we thank K. Lambeck and P. Woodworth for providing constructive feedback on the original version of this manuscript.

Author information

Correspondence to Glenn A. Milne.

Rights and permissions

Reprints and Permissions

About this article

Further reading