Oceanic forcing of the Marine Isotope Stage 11 interglacial

Abstract

The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for ‘pre-anthropogenic’ greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Location of sites GeoB1720-2 (2859′ S,1350′ E, 1,997 m, this study), GeoB1720-3 (2859′ S, 1350′ E, 2,004 m, this study), ODP sites 1085 (292′ S, 136′ E, 1,713 m; ref. 18), 980 (55.3 N, 14.4 W, 2,170 m; refs 35, 43), 1063 (33.4 N, 57.4 W, 4,583 m; ref. 34) and 1089 (47.6 S, 9.5 E, 4,621 m; ref. 46), and MD01-2443 (37.5 N, 10.1 W; ref. 47).
Figure 2: Southeast Atlantic Ocean proxy data.
Figure 3: Comparison of published Atlantic Ocean benthic-δ13C records showing a ‘mid-MIS-11’ shift to higher values.
Figure 4: Magnitude of the mid-MIS-11 benthic-δ13C increase in different Atlantic Ocean records.
Figure 5: Comparison of insolation features and global climate proxies over the past 800 kyr.

References

  1. 1

    Berger, A. & Loutre, M.-F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).

  2. 2

    Loutre, M.-F. & Berger, A. Marine Isotope Stage 11 as an analogue for the present interglacial. Global. Planet. Change 36, 209–217 (2003).

  3. 3

    Droxler, A., Alley, R. B., Howard, W. R., Poore, R.Z & Burckle, L. H. in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) (Geophysical Monograph Series 137, American Geophysical Union, 2003).

  4. 4

    Ruddiman, W. F. Cold climate during the closest Stage 11 analog to recent millennia. Quat. Sci. Rev. 24, 111–1121 (2005).

  5. 5

    Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

  6. 6

    EPICA community members.Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

  7. 7

    Masson-Delmotte, V. et al. Past temperature reconstructions from deep ice cores: Relevance for future climate change. Clim. Past 2, 145–165 (2006).

  8. 8

    Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the last glacial maximum. Science 316, 66–69 (2007).

  9. 9

    Ruhlemann, C. et al. Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining palaeoclimate data and modeling results for the last deglaciation. Paleoceanography 19, PA1025 (2004).

  10. 10

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

  11. 11

    Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and last glacial maximum duration from an extended Barbados sea-level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

  12. 12

    Kawamura, K. et al. Northern hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

  13. 13

    Marra, F., Florindo, F. & Boschi, E. History of glacial terminations from the Tiber River, Rome: Insights into glacial forcing mechanisms. Paleoceanography 23, PA2205 (2008).

  14. 14

    Huybers, P. & Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494 (2005).

  15. 15

    Raymo, M. E. The timing of major climate terminations. Paleoceanography 12, 577–585 (1997).

  16. 16

    Kulka, G. & Gavin, J. Did glacials start with global warming? Quat. Sci. Rev. 24, 1547–1557 (2005).

  17. 17

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

  18. 18

    Dickson, A. J., Leng, M. J. & Maslin, M. A. Mid-depth South Atlantic Ocean circulation and chemical stratification during MIS-10 to 12: Implications for atmospheric CO2 . Clim. Past 4, 333–344 (2008).

  19. 19

    Stanford, J. D. et al. Timing of meltwater pulse 1A and climate responses to meltwater injections. Paleoceanography 21, PA4103 (2006).

  20. 20

    Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).

  21. 21

    Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

  22. 22

    McManus, J. F., Oppo, D. W., Cullen, J. & Healey, S. in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) (Geophysical Monograph Series 137, American Geophysical Union, 2003).

  23. 23

    Kandiano, E. S. & Bauch, H. A. Phase relationship and surface water mass change in the Northeast Atlantic during Marine Isotope Stage 11 (MIS 11). Quat. Res. 68, 445–455 (2007).

  24. 24

    De Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation and ice-volume over the past million years. Nature 320, 1622–1625 (2008).

  25. 25

    Hearty, P. J. & Olsen, S. L. Mega-highstand or megatsunami? Discussion of McMurtry et al. (Elevated marine deposits in Bermuda record a late Quaternary megatsunami: Sedimentary Geology 200, 155–165). Sedim. Geol. 203, 307–312 (2007).

  26. 26

    Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

  27. 27

    Rau, A. J. et al. A 450-kyr record of hydrological conditions on the western Agulhas bank slope, south of Africa. Mar. Geol. 180, 183–201 (2002).

  28. 28

    Peeters, F. J. C. et al. Vigourous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004).

  29. 29

    Maslin, M. A. & Thomas, E. Balancing the deglacial global carbon budget: The hydrate factor. Quat. Sci. Rev. 22, 1729–1736 (2003).

  30. 30

    Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplen, T. B. & Riggs, A. C. Duration and structure of the past four interglaciations. Quat. Res. 48, 141–154 (1997).

  31. 31

    Tzedakis, P. C., Palike, H., Roucoux, K. H. & de Abreu, L. Atmospheric methane, southern European vegetation and low–mid latitude links on orbital and millennial timescales. Earth Planet. Sci. Lett. 277, 307–317 (2009).

  32. 32

    Kunz-Pirrung, M., Gersonde, R. & And Hodell, D. A. Mid-Brunhes century-scale diatom and sea-surface temperature and sea ice records from the Atlantic sector of the Southern Ocean (ODP Leg 177, sites 1093, 1094 and core PS2089-2). Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 305–328 (2003).

  33. 33

    Sun, Y., Clemens, S. C., An, Z. & Yu, Z. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese loess plateau. Quat. Sci. Rev. 25, 33–48 (2006).

  34. 34

    Lisiecki, L. E., Raymo, M. E. & Curry, W. B. Atlantic overturning responses to late Pleistocene climate forcings. Nature 456, 85–88 (2008).

  35. 35

    Oppo, D. W., McManus, J. F. & Cullen, J. L. Abrupt climate events 500,000–340,000 years ago: Evidence from subpolar North Atlantic sediments. Science 279, 1335–1338 (1998).

  36. 36

    Poli, M. S., Thunell, R. C. & Rio, D. Millennial-scale changes in North Atlantic Deep Water circulation during marine isotope stages 11 and 12: Linkage to Antarctic climate. Geology 28, 807–810 (2000).

  37. 37

    Raymo, M. E., Ruddiman, W. F., Shackleton, N. J. & Oppo, D. W. Evolution of Atlantic–Pacific δ13C gradients over the last 2.5 m.y. Earth Planet. Sci. Lett. 97, 353–368 (1990).

  38. 38

    Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK37′) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).

  39. 39

    Hughen, K. et al. Marine04 marine radiocarbon age calibration 26–0 ka BP. Radiocarbon 46, 1059–1086 (2004).

  40. 40

    Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).

  41. 41

    Fairbanks, R. G. et al. Radiocarbon calibration curve spanning 0–50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 24, 1781–1796 (2005).

  42. 42

    Southon, J., Kashgarian, J., Fontugne, M., Metivier, B. & Yim, W. W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).

  43. 43

    Flower, B. P. et al. North Atlantic intermediate to deep water circulation and chemical stratification during the past 1 Myr. Paleoceanography 15, 388–403 (2000).

  44. 44

    Gallup, C. D., Cheng, H., Taylor, F. W. & Edwards, R. L. Direct determination of the timing of sea-level changes during termination II. Science 295, 310–313 (2002).

  45. 45

    Channell, J. E. T. & Lehman, B. in Proc. ODP, Sci. Results Vol. 162 (eds Raymo, M. E., Jansen, E., Blum, P. & Herbert, T. D.) 113–130 (1999).

  46. 46

    Hodell, D. A., Kanfoush, S., Venz, K. A. & Charles, C. D. in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) (Geophysical Monograph Series 137, American Geophysical Union, 2003).

  47. 47

    De Abreu, L. et al. Ocean climate variability in the eastern North Atlantic during interglacial marine isotope stage 11: A partial analogue to the Holocene? Paleoceanography 20, PA3009 (2005).

  48. 48

    Garcia, H. E., Locarnini, R. A., Boyer, T. P. & Antonov, J. I. World Ocean Atlas 2005, Volume 4: Nutrients (Phosphate, Nitrate, Silicate) (US Government Printing Office, 2006).

  49. 49

    Schlitzer, R. Ocean Data View <http://odv.awi.de> (2006).

  50. 50

    Skinner, L. C. & Shackleton, N. J. An Atlantic lead over Pacific deep water change across Termination 1: Implications for the application of the marine isotope stage stratigraphy. Quat. Sci. Rev. 24, 571–580 (2005).

Download references

Acknowledgements

We would like to thank G. Mollenhauer and the IODP Bremen Core Repository for facilitating access to core material from GeoB1720-2/3 and Site-1085, M. Hall for running the stable isotope data for GeoB1720-2/3, I. Harrison for assistance in running alkenone samples and M. Leng for commenting on an early draft of the manuscript. This work was supported by an NERC PhD studentship awarded to A.J.D. (NER/S/A/2005/13226), NERC radiocarbon allocations 1194.1006 and 1235.1007 and NERC LSMSF grant lsmsfbris008.

Author information

A.J.D. initiated the project, processed radiocarbon samples and alkenone samples from Site-1085 and GeoB1720, and wrote the manuscript. C.J.B. processed foraminifera isotope samples from GeoB1720. J.A.B. and C.D. processed alkenone samples from GeoB1720. All authors contributed to the interpretation of the results.

Correspondence to Alexander J. Dickson.

Supplementary information

Supplementary Information

Supplementary Information (PDF 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dickson, A., Beer, C., Dempsey, C. et al. Oceanic forcing of the Marine Isotope Stage 11 interglacial. Nature Geosci 2, 428–433 (2009). https://doi.org/10.1038/ngeo527

Download citation

Further reading