Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oceanic forcing of the Marine Isotope Stage 11 interglacial

Abstract

The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for ‘pre-anthropogenic’ greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of sites GeoB1720-2 (2859′ S,1350′ E, 1,997 m, this study), GeoB1720-3 (2859′ S, 1350′ E, 2,004 m, this study), ODP sites 1085 (292′ S, 136′ E, 1,713 m; ref. 18), 980 (55.3 N, 14.4 W, 2,170 m; refs 35, 43), 1063 (33.4 N, 57.4 W, 4,583 m; ref. 34) and 1089 (47.6 S, 9.5 E, 4,621 m; ref. 46), and MD01-2443 (37.5 N, 10.1 W; ref. 47).
Figure 2: Southeast Atlantic Ocean proxy data.
Figure 3: Comparison of published Atlantic Ocean benthic-δ13C records showing a ‘mid-MIS-11’ shift to higher values.
Figure 4: Magnitude of the mid-MIS-11 benthic-δ13C increase in different Atlantic Ocean records.
Figure 5: Comparison of insolation features and global climate proxies over the past 800 kyr.

Similar content being viewed by others

References

  1. Berger, A. & Loutre, M.-F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).

    Article  Google Scholar 

  2. Loutre, M.-F. & Berger, A. Marine Isotope Stage 11 as an analogue for the present interglacial. Global. Planet. Change 36, 209–217 (2003).

    Article  Google Scholar 

  3. Droxler, A., Alley, R. B., Howard, W. R., Poore, R.Z & Burckle, L. H. in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) (Geophysical Monograph Series 137, American Geophysical Union, 2003).

    Book  Google Scholar 

  4. Ruddiman, W. F. Cold climate during the closest Stage 11 analog to recent millennia. Quat. Sci. Rev. 24, 111–1121 (2005).

    Google Scholar 

  5. Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

    Article  Google Scholar 

  6. EPICA community members.Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

  7. Masson-Delmotte, V. et al. Past temperature reconstructions from deep ice cores: Relevance for future climate change. Clim. Past 2, 145–165 (2006).

    Article  Google Scholar 

  8. Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the last glacial maximum. Science 316, 66–69 (2007).

    Article  Google Scholar 

  9. Ruhlemann, C. et al. Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining palaeoclimate data and modeling results for the last deglaciation. Paleoceanography 19, PA1025 (2004).

    Article  Google Scholar 

  10. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  11. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and last glacial maximum duration from an extended Barbados sea-level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article  Google Scholar 

  12. Kawamura, K. et al. Northern hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

    Article  Google Scholar 

  13. Marra, F., Florindo, F. & Boschi, E. History of glacial terminations from the Tiber River, Rome: Insights into glacial forcing mechanisms. Paleoceanography 23, PA2205 (2008).

    Article  Google Scholar 

  14. Huybers, P. & Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494 (2005).

    Article  Google Scholar 

  15. Raymo, M. E. The timing of major climate terminations. Paleoceanography 12, 577–585 (1997).

    Article  Google Scholar 

  16. Kulka, G. & Gavin, J. Did glacials start with global warming? Quat. Sci. Rev. 24, 1547–1557 (2005).

    Article  Google Scholar 

  17. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  18. Dickson, A. J., Leng, M. J. & Maslin, M. A. Mid-depth South Atlantic Ocean circulation and chemical stratification during MIS-10 to 12: Implications for atmospheric CO2 . Clim. Past 4, 333–344 (2008).

    Article  Google Scholar 

  19. Stanford, J. D. et al. Timing of meltwater pulse 1A and climate responses to meltwater injections. Paleoceanography 21, PA4103 (2006).

    Article  Google Scholar 

  20. Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).

    Article  Google Scholar 

  21. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  22. McManus, J. F., Oppo, D. W., Cullen, J. & Healey, S. in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) (Geophysical Monograph Series 137, American Geophysical Union, 2003).

    Google Scholar 

  23. Kandiano, E. S. & Bauch, H. A. Phase relationship and surface water mass change in the Northeast Atlantic during Marine Isotope Stage 11 (MIS 11). Quat. Res. 68, 445–455 (2007).

    Article  Google Scholar 

  24. De Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation and ice-volume over the past million years. Nature 320, 1622–1625 (2008).

    Google Scholar 

  25. Hearty, P. J. & Olsen, S. L. Mega-highstand or megatsunami? Discussion of McMurtry et al. (Elevated marine deposits in Bermuda record a late Quaternary megatsunami: Sedimentary Geology 200, 155–165). Sedim. Geol. 203, 307–312 (2007).

    Article  Google Scholar 

  26. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    Article  Google Scholar 

  27. Rau, A. J. et al. A 450-kyr record of hydrological conditions on the western Agulhas bank slope, south of Africa. Mar. Geol. 180, 183–201 (2002).

    Article  Google Scholar 

  28. Peeters, F. J. C. et al. Vigourous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004).

    Article  Google Scholar 

  29. Maslin, M. A. & Thomas, E. Balancing the deglacial global carbon budget: The hydrate factor. Quat. Sci. Rev. 22, 1729–1736 (2003).

    Article  Google Scholar 

  30. Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplen, T. B. & Riggs, A. C. Duration and structure of the past four interglaciations. Quat. Res. 48, 141–154 (1997).

    Article  Google Scholar 

  31. Tzedakis, P. C., Palike, H., Roucoux, K. H. & de Abreu, L. Atmospheric methane, southern European vegetation and low–mid latitude links on orbital and millennial timescales. Earth Planet. Sci. Lett. 277, 307–317 (2009).

    Article  Google Scholar 

  32. Kunz-Pirrung, M., Gersonde, R. & And Hodell, D. A. Mid-Brunhes century-scale diatom and sea-surface temperature and sea ice records from the Atlantic sector of the Southern Ocean (ODP Leg 177, sites 1093, 1094 and core PS2089-2). Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 305–328 (2003).

    Article  Google Scholar 

  33. Sun, Y., Clemens, S. C., An, Z. & Yu, Z. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese loess plateau. Quat. Sci. Rev. 25, 33–48 (2006).

    Article  Google Scholar 

  34. Lisiecki, L. E., Raymo, M. E. & Curry, W. B. Atlantic overturning responses to late Pleistocene climate forcings. Nature 456, 85–88 (2008).

    Article  Google Scholar 

  35. Oppo, D. W., McManus, J. F. & Cullen, J. L. Abrupt climate events 500,000–340,000 years ago: Evidence from subpolar North Atlantic sediments. Science 279, 1335–1338 (1998).

    Article  Google Scholar 

  36. Poli, M. S., Thunell, R. C. & Rio, D. Millennial-scale changes in North Atlantic Deep Water circulation during marine isotope stages 11 and 12: Linkage to Antarctic climate. Geology 28, 807–810 (2000).

    Article  Google Scholar 

  37. Raymo, M. E., Ruddiman, W. F., Shackleton, N. J. & Oppo, D. W. Evolution of Atlantic–Pacific δ13C gradients over the last 2.5 m.y. Earth Planet. Sci. Lett. 97, 353–368 (1990).

    Article  Google Scholar 

  38. Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK37′) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).

    Google Scholar 

  39. Hughen, K. et al. Marine04 marine radiocarbon age calibration 26–0 ka BP. Radiocarbon 46, 1059–1086 (2004).

    Article  Google Scholar 

  40. Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  41. Fairbanks, R. G. et al. Radiocarbon calibration curve spanning 0–50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 24, 1781–1796 (2005).

    Article  Google Scholar 

  42. Southon, J., Kashgarian, J., Fontugne, M., Metivier, B. & Yim, W. W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).

    Article  Google Scholar 

  43. Flower, B. P. et al. North Atlantic intermediate to deep water circulation and chemical stratification during the past 1 Myr. Paleoceanography 15, 388–403 (2000).

    Article  Google Scholar 

  44. Gallup, C. D., Cheng, H., Taylor, F. W. & Edwards, R. L. Direct determination of the timing of sea-level changes during termination II. Science 295, 310–313 (2002).

    Article  Google Scholar 

  45. Channell, J. E. T. & Lehman, B. in Proc. ODP, Sci. Results Vol. 162 (eds Raymo, M. E., Jansen, E., Blum, P. & Herbert, T. D.) 113–130 (1999).

    Google Scholar 

  46. Hodell, D. A., Kanfoush, S., Venz, K. A. & Charles, C. D. in Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) (Geophysical Monograph Series 137, American Geophysical Union, 2003).

    Google Scholar 

  47. De Abreu, L. et al. Ocean climate variability in the eastern North Atlantic during interglacial marine isotope stage 11: A partial analogue to the Holocene? Paleoceanography 20, PA3009 (2005).

    Article  Google Scholar 

  48. Garcia, H. E., Locarnini, R. A., Boyer, T. P. & Antonov, J. I. World Ocean Atlas 2005, Volume 4: Nutrients (Phosphate, Nitrate, Silicate) (US Government Printing Office, 2006).

    Google Scholar 

  49. Schlitzer, R. Ocean Data View <http://odv.awi.de> (2006).

  50. Skinner, L. C. & Shackleton, N. J. An Atlantic lead over Pacific deep water change across Termination 1: Implications for the application of the marine isotope stage stratigraphy. Quat. Sci. Rev. 24, 571–580 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Mollenhauer and the IODP Bremen Core Repository for facilitating access to core material from GeoB1720-2/3 and Site-1085, M. Hall for running the stable isotope data for GeoB1720-2/3, I. Harrison for assistance in running alkenone samples and M. Leng for commenting on an early draft of the manuscript. This work was supported by an NERC PhD studentship awarded to A.J.D. (NER/S/A/2005/13226), NERC radiocarbon allocations 1194.1006 and 1235.1007 and NERC LSMSF grant lsmsfbris008.

Author information

Authors and Affiliations

Authors

Contributions

A.J.D. initiated the project, processed radiocarbon samples and alkenone samples from Site-1085 and GeoB1720, and wrote the manuscript. C.J.B. processed foraminifera isotope samples from GeoB1720. J.A.B. and C.D. processed alkenone samples from GeoB1720. All authors contributed to the interpretation of the results.

Corresponding author

Correspondence to Alexander J. Dickson.

Supplementary information

Supplementary Information

Supplementary Information (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, A., Beer, C., Dempsey, C. et al. Oceanic forcing of the Marine Isotope Stage 11 interglacial. Nature Geosci 2, 428–433 (2009). https://doi.org/10.1038/ngeo527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing