Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vertical mantle flow associated with a lithospheric drip beneath the Great Basin

Abstract

Rapid surface uplift or subsidence and voluminous magmatic activity have often been ascribed to regional-scale downwelling of lithospheric mantle. However, because lithospheric drips—sinking plumes of cold and dense lithosphere—are relatively small and transient features, direct evidence of their existence has been difficult to obtain. Moreover, the significant vertical mantle flow that should be associated with such structures has not been detected. Here we integrate seismic anisotropy data with tomographic images to identify and describe a lithospheric drip beneath the Great Basin region of the western United States. The feature is characterized by a localized cylindrical core of cooler material with fast seismic velocities and mantle flow that rapidly shifts from horizontal to vertical. Our numerical experiments suggest that the drip can be generated by gravitational instability resulting from a density anomaly of as little as 1% and a localized temperature increase of 10%. The drip tilts to the northeast—opposite to the motion of the North American plate in the hotspot reference frame—and thereby indicates northeast-directed regional mantle flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear-wave splitting results for the Great Basin and surrounding provinces.
Figure 2: Combined shear-wave splitting and tomography results.
Figure 3: Geodynamic model of a lithospheric drip.
Figure 4: Summary of geological and geophysical constraints for the central Great Basin.

Similar content being viewed by others

References

  1. Göǧüş, O. H. & Pysklywec, R. N. Near-surface diagnostics of dripping or delaminating lithosphere. J. Geophys. Res. 113, 311404 (2008).

    Article  Google Scholar 

  2. Boyd, O. S., Jones, C. H. & Sheehan, A. F. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California, USA. Science 305, 660–662 (2004).

    Article  Google Scholar 

  3. Hales, T. C., Abt, D. L., Humphreys, E. D. & Roering, J. J. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon. Nature 438, 842–845 (2005).

    Article  Google Scholar 

  4. Zandt, G. et al. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46 (2004).

    Article  Google Scholar 

  5. Burov, E., Guillou-Frottier, L., d’Acremont, E., Le Pourhiet, L. & Cloetingh, S. Plume head-lithosphere interactions near intra-continental plate boundaries. Tectonophysics 434, 15–38 (2007).

    Article  Google Scholar 

  6. Burov, E. in Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup (eds Karner, G. D., Manatschal, G. & Pinheiro, L. M.) 139–156 (Special Publications Vol. 282, The Geological Society of London, 2007).

    Google Scholar 

  7. Poudjom Djomani, Y. H., O’Reilly, S. Y., Griffin, W. L. & Morgan, P. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184, 605–621 (2001).

    Article  Google Scholar 

  8. Elkins-Tanton, L. T. Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. J. Geophys. Res. 112, B03405 (2007).

    Article  Google Scholar 

  9. Best, M. G. & Christiansen, E. H. Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah. J. Geophys. Res. 96, 13509–13528 (1991).

    Article  Google Scholar 

  10. Dickinson, W. R. Geotectonic evolution of the Great Basin. Geosphere 2, 353–368 (2006).

    Article  Google Scholar 

  11. Shepard, M. K., Arvidson, R. E., Caffee, M., Finkel, R. & Harris, L. Cosmogenic exposure ages of basalt flows—Lunar Crater volcanic field, Nevada. Geology 23, 21–24 (1995).

    Article  Google Scholar 

  12. Sonder, L. J. & Jones, C. H. Western United States extension: How the West was widened. Annu. Rev. Earth Planet. Sci. 27, 417–462 (1999).

    Article  Google Scholar 

  13. Hammond, W. C. & Thatcher, W. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J. Geophys. Res. 109, B08403 (2004).

    Article  Google Scholar 

  14. Blackwell, D. D., Steele, J. L. & Carter, L. S. Neotectonics of North America 423–437 (Geological Society of America, 1991).

    Google Scholar 

  15. Gilbert, H. J. & Sheehan, A. F. Images of crustal variations in the intermountain west. J. Geophys. Res. 109, B03306 (2004).

    Article  Google Scholar 

  16. Li, X. Q., Yuan, X. H. & Kind, R. The lithosphere-asthenosphere boundary beneath the western United States. Geophys. J. Int. 170, 700–710 (2007).

    Article  Google Scholar 

  17. Savage, M. K. & Sheehan, A. F. Seismic anisotropy and mantle flow from the Great Basin to the Great Plains, western United States. J. Geophys. Res. 105, 13715–13734 (2000).

    Article  Google Scholar 

  18. Sheehan, A. F., Jones, C. H., Savage, M. K., Özalaybey, S. & Schneider, J. M. Contrasting lithospheric structure between the Colorado Plateau and Great Basin: Initial results from Colorado Plateau—Great Basin PASSCAL experiment. Geophys. Res. Lett. 24, 2609–2612 (1997).

    Article  Google Scholar 

  19. Zandt, G. & Humphreys, E. Toroidal mantle flow through the western US slab window. Geology 36, 295–298 (2008).

    Article  Google Scholar 

  20. Roth, J. B., Fouch, M. J., James, D. E. & Carlson, R. W. Three-dimensional seismic velocity structure of the northwestern United States. Geophys. Res. Lett. 35, L15304 (2008).

    Article  Google Scholar 

  21. Yang, Y. J. & Ritzwoller, M. H. Teleseismic surface wave tomography in the western US using the Transportable Array component of USArray. Geophys. Res. Lett. 35, L04308 (2008).

    Google Scholar 

  22. Fouch, M. J. & Rondenay, S. Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter. 158, 292–320 (2006).

    Article  Google Scholar 

  23. Silver, P. G. & Holt, W. E. The mantle flow field beneath western North America. Science 295, 1054–1057 (2002).

    Article  Google Scholar 

  24. Lassak, T. M., Fouch, M. J., Hall, C. E. & Kaminski, E. Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge? Earth Planet. Sci. Lett. 243, 632–649 (2006).

    Article  Google Scholar 

  25. Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001).

    Article  Google Scholar 

  26. Hole, J. A., Beaudoin, B. C. & Henstock, T. J. Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration. Tectonics 17, 802–818 (1998).

    Article  Google Scholar 

  27. Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002).

    Article  Google Scholar 

  28. Wernicke, B., Davis, J. L., Niemi, N. A., Luffi, P. & Bisnath, S. Active megadetachment beneath the western United States. J. Geophys. Res. 113, B11409 (2008).

    Article  Google Scholar 

  29. NAVDAT, Western North American Volcanic and Intrusive Rock Database. <http://navdat.kgs.ku.edu> (2008).

  30. Hawkesworth, C. et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J. Geophys. Res. 100, 10271–10286 (1995).

    Article  Google Scholar 

  31. Zandt, G. The southern Sierra Nevada drip and the mantle wind direction beneath the southwestern United States. Int. Geol. Rev. 45, 213–224 (2003).

    Article  Google Scholar 

  32. Becker, T. W., Schulte-Pelkum, V., Blackman, D. K., Kellogg, J. B. & O’Connell, R. J. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett. 247, 235–251 (2006).

    Article  Google Scholar 

  33. Silver, P. G. & Chan, W. W. Implications for continental structure and evolution from seismic anisotropy. Nature 335, 34–39 (1988).

    Article  Google Scholar 

  34. Wüstefeld, A., Bokelmann, G., Zaroli, C. & Barruol, G. SplitLab: A shear-wave splitting environment in Matlab. Comput. Geosci. 34, 515–528 (2008).

    Article  Google Scholar 

  35. VanDecar, J. C. Upper-mantle structure of the Cascadia subduction zone from non-linear teleseismic traveltime inversion PhD thesis, Univ. Washington (1991).

  36. James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & the Kaapvaal Seismic Group. Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28 2485–2488 (2001).

  37. King, S. D., Raefsky, A. & Hager, B. H. CONMAN—Vectorizing a finite-element code for incompressible 2-dimensional convection in the Earth’s Mantle. Phys. Earth Planet. Inter. 59, 195–207 (1990).

    Article  Google Scholar 

  38. Elkins-Tanton, L. T. in Plates, Plumes, and Paradigms (eds Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D. L.) 449–461 (Special Paper Vol. 388, Geological Society of America, 2005).

    Google Scholar 

  39. van Keken, P. E. et al. A comparison of methods for the modelling of thermochemical convection. J. Geophys. Res. 102, 22477–22495 (1997).

    Article  Google Scholar 

  40. Gök, R. et al. Shear wave splitting and mantle flow beneath LA RISTRA. Geophys. Res. Lett. 30, 1614 (2003).

    Google Scholar 

  41. Hartog, R. & Schwartz, S. Y. Subduction-induced strain in the upper mantle east of the Mendocino triple junction, California. J. Geophys. Res. 105, 7909–7930 (2000).

    Article  Google Scholar 

  42. Kubo, A. & Hiramatsu, Y. On presence of seismic anisotropy in the asthenosphere beneath continents and its dependence on plate velocity: Significance of reference frame selection. Pure Appl. Geophys. 151, 281–303 (1998).

    Article  Google Scholar 

  43. Özalaybey, S. & Savage, M. K. Shear-wave splitting beneath western United States in relation to plate tectonics. J. Geophys. Res. 100, 18135–18149 (1995).

    Article  Google Scholar 

  44. Polet, J. & Kanamori, H. Anisotropy beneath California: Shear wave splitting measurements using a dense broadband array. Geophys. J. Int. 149, 313–327 (2002).

    Article  Google Scholar 

  45. Savage, M. K., Sheehan, A. F. & Lerner-Lam, A. Shear wave splitting across the Rocky Mountain Front. Geophys. Res. Lett. 23, 2267–2270 (1996).

    Article  Google Scholar 

  46. Savage, M. K. & Silver, P. G. Mantle deformation and tectonics—constraints from seismic anisotropy in the western United States. Phys. Earth Planet. Inter. 78, 207–227 (1993).

    Article  Google Scholar 

  47. Savage, M. K., Silver, P. G. & Meyer, R. P. Observations of teleseismic shear-wave splitting in the Basin and Range from portable and permanent stations. Geophys. Res. Lett. 17, 21–24 (1990).

    Article  Google Scholar 

  48. Waite, G. P., Schutt, D. L. & Smith, R. B. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting. J. Geophys. Res. 110, B11304 (2005).

    Article  Google Scholar 

  49. Wang, X. L. et al. Shear-wave splitting and mantle flow beneath the Colorado Plateau and its boundary with the Great Basin. Bull. Seismol. Soc. Am. 98, 2526–2532 (2008).

    Article  Google Scholar 

  50. Xue, M. & Allen, R. M. Origin of the Newberry Hotspot Track: Evidence from shear-wave splitting. Earth Planet. Sci. Lett. 244, 315–322 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Garnero, A. McNamara and R. Rudnick for lively discussions of the possible causes of the Nevada anomaly, G. Zandt and G. Humphreys for discussions of Great Basin shear-wave splitting patterns and interpretation, and A. Sheehan and B. Holt for discussions of lithospheric dynamics. Thanks also to M. Savage for constructive and insightful comments on the manuscript. Partial support for this project came from US National Science Foundation grants EAR-0548288 (MJF EarthScope CAREER grant) and EAR-0507248 (MJF Continental Dynamics High Lava Plains grant).

Author information

Authors and Affiliations

Authors

Contributions

J.D.W. and M.J.F. carried out shear-wave splitting measurements; J.B.R. and M.J.F. created the tomography models; L.T.E. created the geodynamical models; J.D.W. and M.J.F. prepared the manuscript with input, comments and review from all authors.

Corresponding authors

Correspondence to John D. West or Jeffrey B. Roth.

Supplementary information

Supplementary Methods and Fig. S2

Supplementary Information (PDF 1388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J., Fouch, M., Roth, J. et al. Vertical mantle flow associated with a lithospheric drip beneath the Great Basin. Nature Geosci 2, 439–444 (2009). https://doi.org/10.1038/ngeo526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing