Abstract
Rapid surface uplift or subsidence and voluminous magmatic activity have often been ascribed to regional-scale downwelling of lithospheric mantle. However, because lithospheric drips—sinking plumes of cold and dense lithosphere—are relatively small and transient features, direct evidence of their existence has been difficult to obtain. Moreover, the significant vertical mantle flow that should be associated with such structures has not been detected. Here we integrate seismic anisotropy data with tomographic images to identify and describe a lithospheric drip beneath the Great Basin region of the western United States. The feature is characterized by a localized cylindrical core of cooler material with fast seismic velocities and mantle flow that rapidly shifts from horizontal to vertical. Our numerical experiments suggest that the drip can be generated by gravitational instability resulting from a density anomaly of as little as 1% and a localized temperature increase of 10%. The drip tilts to the northeast—opposite to the motion of the North American plate in the hotspot reference frame—and thereby indicates northeast-directed regional mantle flow.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Göǧüş, O. H. & Pysklywec, R. N. Near-surface diagnostics of dripping or delaminating lithosphere. J. Geophys. Res. 113, 311404 (2008).
Boyd, O. S., Jones, C. H. & Sheehan, A. F. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California, USA. Science 305, 660–662 (2004).
Hales, T. C., Abt, D. L., Humphreys, E. D. & Roering, J. J. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon. Nature 438, 842–845 (2005).
Zandt, G. et al. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46 (2004).
Burov, E., Guillou-Frottier, L., d’Acremont, E., Le Pourhiet, L. & Cloetingh, S. Plume head-lithosphere interactions near intra-continental plate boundaries. Tectonophysics 434, 15–38 (2007).
Burov, E. in Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup (eds Karner, G. D., Manatschal, G. & Pinheiro, L. M.) 139–156 (Special Publications Vol. 282, The Geological Society of London, 2007).
Poudjom Djomani, Y. H., O’Reilly, S. Y., Griffin, W. L. & Morgan, P. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184, 605–621 (2001).
Elkins-Tanton, L. T. Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. J. Geophys. Res. 112, B03405 (2007).
Best, M. G. & Christiansen, E. H. Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah. J. Geophys. Res. 96, 13509–13528 (1991).
Dickinson, W. R. Geotectonic evolution of the Great Basin. Geosphere 2, 353–368 (2006).
Shepard, M. K., Arvidson, R. E., Caffee, M., Finkel, R. & Harris, L. Cosmogenic exposure ages of basalt flows—Lunar Crater volcanic field, Nevada. Geology 23, 21–24 (1995).
Sonder, L. J. & Jones, C. H. Western United States extension: How the West was widened. Annu. Rev. Earth Planet. Sci. 27, 417–462 (1999).
Hammond, W. C. & Thatcher, W. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J. Geophys. Res. 109, B08403 (2004).
Blackwell, D. D., Steele, J. L. & Carter, L. S. Neotectonics of North America 423–437 (Geological Society of America, 1991).
Gilbert, H. J. & Sheehan, A. F. Images of crustal variations in the intermountain west. J. Geophys. Res. 109, B03306 (2004).
Li, X. Q., Yuan, X. H. & Kind, R. The lithosphere-asthenosphere boundary beneath the western United States. Geophys. J. Int. 170, 700–710 (2007).
Savage, M. K. & Sheehan, A. F. Seismic anisotropy and mantle flow from the Great Basin to the Great Plains, western United States. J. Geophys. Res. 105, 13715–13734 (2000).
Sheehan, A. F., Jones, C. H., Savage, M. K., Özalaybey, S. & Schneider, J. M. Contrasting lithospheric structure between the Colorado Plateau and Great Basin: Initial results from Colorado Plateau—Great Basin PASSCAL experiment. Geophys. Res. Lett. 24, 2609–2612 (1997).
Zandt, G. & Humphreys, E. Toroidal mantle flow through the western US slab window. Geology 36, 295–298 (2008).
Roth, J. B., Fouch, M. J., James, D. E. & Carlson, R. W. Three-dimensional seismic velocity structure of the northwestern United States. Geophys. Res. Lett. 35, L15304 (2008).
Yang, Y. J. & Ritzwoller, M. H. Teleseismic surface wave tomography in the western US using the Transportable Array component of USArray. Geophys. Res. Lett. 35, L04308 (2008).
Fouch, M. J. & Rondenay, S. Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter. 158, 292–320 (2006).
Silver, P. G. & Holt, W. E. The mantle flow field beneath western North America. Science 295, 1054–1057 (2002).
Lassak, T. M., Fouch, M. J., Hall, C. E. & Kaminski, E. Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge? Earth Planet. Sci. Lett. 243, 632–649 (2006).
Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001).
Hole, J. A., Beaudoin, B. C. & Henstock, T. J. Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration. Tectonics 17, 802–818 (1998).
Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002).
Wernicke, B., Davis, J. L., Niemi, N. A., Luffi, P. & Bisnath, S. Active megadetachment beneath the western United States. J. Geophys. Res. 113, B11409 (2008).
NAVDAT, Western North American Volcanic and Intrusive Rock Database. <http://navdat.kgs.ku.edu> (2008).
Hawkesworth, C. et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J. Geophys. Res. 100, 10271–10286 (1995).
Zandt, G. The southern Sierra Nevada drip and the mantle wind direction beneath the southwestern United States. Int. Geol. Rev. 45, 213–224 (2003).
Becker, T. W., Schulte-Pelkum, V., Blackman, D. K., Kellogg, J. B. & O’Connell, R. J. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett. 247, 235–251 (2006).
Silver, P. G. & Chan, W. W. Implications for continental structure and evolution from seismic anisotropy. Nature 335, 34–39 (1988).
Wüstefeld, A., Bokelmann, G., Zaroli, C. & Barruol, G. SplitLab: A shear-wave splitting environment in Matlab. Comput. Geosci. 34, 515–528 (2008).
VanDecar, J. C. Upper-mantle structure of the Cascadia subduction zone from non-linear teleseismic traveltime inversion PhD thesis, Univ. Washington (1991).
James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & the Kaapvaal Seismic Group. Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28 2485–2488 (2001).
King, S. D., Raefsky, A. & Hager, B. H. CONMAN—Vectorizing a finite-element code for incompressible 2-dimensional convection in the Earth’s Mantle. Phys. Earth Planet. Inter. 59, 195–207 (1990).
Elkins-Tanton, L. T. in Plates, Plumes, and Paradigms (eds Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D. L.) 449–461 (Special Paper Vol. 388, Geological Society of America, 2005).
van Keken, P. E. et al. A comparison of methods for the modelling of thermochemical convection. J. Geophys. Res. 102, 22477–22495 (1997).
Gök, R. et al. Shear wave splitting and mantle flow beneath LA RISTRA. Geophys. Res. Lett. 30, 1614 (2003).
Hartog, R. & Schwartz, S. Y. Subduction-induced strain in the upper mantle east of the Mendocino triple junction, California. J. Geophys. Res. 105, 7909–7930 (2000).
Kubo, A. & Hiramatsu, Y. On presence of seismic anisotropy in the asthenosphere beneath continents and its dependence on plate velocity: Significance of reference frame selection. Pure Appl. Geophys. 151, 281–303 (1998).
Özalaybey, S. & Savage, M. K. Shear-wave splitting beneath western United States in relation to plate tectonics. J. Geophys. Res. 100, 18135–18149 (1995).
Polet, J. & Kanamori, H. Anisotropy beneath California: Shear wave splitting measurements using a dense broadband array. Geophys. J. Int. 149, 313–327 (2002).
Savage, M. K., Sheehan, A. F. & Lerner-Lam, A. Shear wave splitting across the Rocky Mountain Front. Geophys. Res. Lett. 23, 2267–2270 (1996).
Savage, M. K. & Silver, P. G. Mantle deformation and tectonics—constraints from seismic anisotropy in the western United States. Phys. Earth Planet. Inter. 78, 207–227 (1993).
Savage, M. K., Silver, P. G. & Meyer, R. P. Observations of teleseismic shear-wave splitting in the Basin and Range from portable and permanent stations. Geophys. Res. Lett. 17, 21–24 (1990).
Waite, G. P., Schutt, D. L. & Smith, R. B. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting. J. Geophys. Res. 110, B11304 (2005).
Wang, X. L. et al. Shear-wave splitting and mantle flow beneath the Colorado Plateau and its boundary with the Great Basin. Bull. Seismol. Soc. Am. 98, 2526–2532 (2008).
Xue, M. & Allen, R. M. Origin of the Newberry Hotspot Track: Evidence from shear-wave splitting. Earth Planet. Sci. Lett. 244, 315–322 (2006).
Acknowledgements
We thank E. Garnero, A. McNamara and R. Rudnick for lively discussions of the possible causes of the Nevada anomaly, G. Zandt and G. Humphreys for discussions of Great Basin shear-wave splitting patterns and interpretation, and A. Sheehan and B. Holt for discussions of lithospheric dynamics. Thanks also to M. Savage for constructive and insightful comments on the manuscript. Partial support for this project came from US National Science Foundation grants EAR-0548288 (MJF EarthScope CAREER grant) and EAR-0507248 (MJF Continental Dynamics High Lava Plains grant).
Author information
Authors and Affiliations
Contributions
J.D.W. and M.J.F. carried out shear-wave splitting measurements; J.B.R. and M.J.F. created the tomography models; L.T.E. created the geodynamical models; J.D.W. and M.J.F. prepared the manuscript with input, comments and review from all authors.
Corresponding authors
Supplementary information
Supplementary Methods and Fig. S2
Supplementary Information (PDF 1388 kb)
Rights and permissions
About this article
Cite this article
West, J., Fouch, M., Roth, J. et al. Vertical mantle flow associated with a lithospheric drip beneath the Great Basin. Nature Geosci 2, 439–444 (2009). https://doi.org/10.1038/ngeo526
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo526
This article is cited by
-
Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China
Nature Communications (2023)
-
Post-subduction tectonics induced by extension from a lithospheric drip
Nature Geoscience (2023)
-
Basin record of a Miocene lithosphere drip beneath the Colorado Plateau
Nature Communications (2023)
-
Symptomatic lithospheric drips triggering fast topographic rise and crustal deformation in the Central Andes
Communications Earth & Environment (2022)
-
Mantle-flow diversion beneath the Iranian plateau induced by Zagros’ lithospheric keel
Scientific Reports (2021)