Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes

Abstract

The Earth's mantle constitutes over 80% of the planet's volume, and is therefore a key reservoir in global geochemical cycling. The magnitudes and length scales of heterogeneities in the composition of the mantle are an important aspect of this reservoir, but are inaccessible to direct sampling. Mid-ocean-ridge basalt (MORB), the dominant eruptive product of ridges, provides a geographically widespread first-order snapshot of the mantle in terms of the distribution of major and trace elements and its isotopic composition. However, a range of processes occur between melt generation at depth and eruption on the sea floor that modulate the chemical signals of mantle heterogeneity in MORB, making it an imperfect sample. Detailed observations over the past few years have revealed that regional mantle heterogeneity is generally preserved in MORB most accurately where the melt supply is low, and that timescales between melt generation and MORB eruption are relatively short. Nevertheless, because of the variety of volcanic and magmatic processes that act to preserve or destroy signatures of mantle heterogeneity in MORB, a much broader base of observations from different locations will be required to faithfully reconstruct upper mantle heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magmatic processes that affect MORB compositions.
Figure 2: Mantle compositional variance loss coupled to differentiation.
Figure 3: Sample sites on the global MOR.
Figure 4: Mantle, crustal and temporal compositions mapped into MORB lava flows.
Figure 5: Sampling density and mantle heterogeneity.

Similar content being viewed by others

References

  1. Allègre, C. J., Hamelin, B. & Dupre, B. Statistical analysis of isotopic ratios in MORB: The mantle blob cluster model and the convective regime of the mantle. Earth Planet. Sci. Lett. 71, 71–84 (1984).

    Article  Google Scholar 

  2. Kelemen, P. B., Hirth, G. B., Shimizu, N., Spiegelman, M. & Dick, H. J. B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading centers. Phil. Trans. R. Soc. A 355, 283–318 (1997).

    Article  Google Scholar 

  3. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-ocean Ridges (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) 183–280 (Geophysical Monograph Series 71, American Geophysical Union, 1992).

    Google Scholar 

  4. Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).

    Article  Google Scholar 

  5. Niu, Y. & O'Hara, M. J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. J. Petrol. 49, 633–664 (2008).

    Article  Google Scholar 

  6. Asimow, P. D., Dixon, J. E. & Langmuir, C. H. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochem. Geophys. Geosyst. 5, Q01E16 (2004).

    Article  Google Scholar 

  7. Ito, G. & Mahoney, J. J. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett. 230, 29–46 (2005).

    Article  Google Scholar 

  8. Elliott, T. & Spiegelman, M. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K) Ch. 3.14, 465–510 (Elsevier, 2007).

    Google Scholar 

  9. Stracke, A., Bourdon, B. & McKenzie, D. Melt extraction in the Earth's mantle: Constraints from U-Th-Pa–Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244, 97–112 (2006).

    Article  Google Scholar 

  10. Rubin, K. H., van der Zander, I., Smith, M. C. & Bergmanis, E. C. Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature 437, 534–538 (2005).

    Article  Google Scholar 

  11. Coogan, L. A. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K) Ch. 3.19, 1–45 (Elsevier, 2007).

    Book  Google Scholar 

  12. Rubin, K. H. & Sinton J. M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet. Sci. Lett. 260, 257–276 (2007).

    Article  Google Scholar 

  13. Agranier A. et al. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth Planet. Sci. Lett. 238, 96–109 (2005).

    Article  Google Scholar 

  14. Meyzen, C. M. et al. Isotopic portrayal of the Earth's upper mantle flow field. Nature 447, 1069–1074 (2007).

    Article  Google Scholar 

  15. Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004).

    Article  Google Scholar 

  16. Paonita, A. & Martelli, M. A new view of the He-Ar-CO2 degassing at mid-ocean ridges: Homogeneous composition of magmas from the upper mantle. Geochim. Cosmochim. Acta 71, 1747–1763 (2007).

    Article  Google Scholar 

  17. Michael, P. J. & Cornell, W. C. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J. Geophys. Res. 103, 18325–18356 (1998).

    Article  Google Scholar 

  18. Davis, A. S., Clague, D. A., Cousens, B. L., Keaten, R. & Paduan, J. B. Geochemistry of basalt from the North Gorda segment of the Gorda Ridge: Evolution toward ultraslow spreading ridge lavas due to decreasing magma supply. Geochem. Geophys. Geosyst. 9, Q04004 (2008).

    Article  Google Scholar 

  19. Russo, C. J., Rubin, K. H. & Graham, D. W. Mantle melting and magma supply to the Southeast Indian Ridge: The roles of lithology and melting conditions from U-series disequilibria. Earth Planet. Sci. Lett. 278, 55–66 (2009).

    Article  Google Scholar 

  20. Graham, D. W., Blichert-Toft, J., Russo, C. J., Rubin, K. H. & Albarède, F. Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature 440, 199–202 (2006).

    Article  Google Scholar 

  21. Tepley, F. J., Lundstrom, C. C., Sims, K. W. W. & Hekinian, R. U-series disequilibria in MORB from the Garrett Transform and implications for mantle melting. Earth Planet. Sci. Lett. 223, 79–97 (2004).

    Article  Google Scholar 

  22. Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002).

    Article  Google Scholar 

  23. Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003).

    Article  Google Scholar 

  24. Standish, J. J., Dick, H. J. B., Michael, P. J., Melson, W. G. & O'Hearn, T. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): Major element chemistry and the importance of process versus source. Geochem. Geophys. Geosyst. 9, Q05004 (2008).

    Article  Google Scholar 

  25. Cannat, M. et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. 9, Q04002 (2008).

    Article  Google Scholar 

  26. Goldstein, S. L. et al. Origin of a 'Southern Hemisphere' geochemical signature in the Arctic upper mantle. Nature 453, 89–93 (2008).

    Article  Google Scholar 

  27. Liu, C.-Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 312–316 (2008).

    Google Scholar 

  28. Perfit, M. R. & Chadwick, W. W. Jr in Faulting and Magmatism at Mid-Ocean Ridges (eds Buck, W. R., Delaney, P., Karson, J. A. & Lababrielle, Y.) 59–115 (Geophysical Monograph Series 106, American Geophysical Union, 1998).

    Google Scholar 

  29. Sinton, J. M. et al. Volcanic eruptions on mid-ocean ridges: New evidence from the superfast-spreading East Pacific Rise, 17°-19°S. J. Geophys. Res. 107, 2115 (2002).

    Article  Google Scholar 

  30. Rubin, K. H. et al. Geochemical heterogeneity within mid-ocean ridge lava flows: Insights into eruption, emplacement and global variations in magma generation. Earth Planet. Sci. Lett. 188, 349–367 (2001).

    Article  Google Scholar 

  31. Bergmanis, E. C., Sinton, J. M. & Rubin, K. H. Recent eruptive history and magma reservoir dynamics on the southern East Pacific Rise at 17°30′S. Geochem. Geophys. Geosyst. 8, Q12O06 (2007).

    Article  Google Scholar 

  32. Sinton, J., Grönvold, K. & Sæmundsson, K. Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochem. Geophys. Geosyst. 6, Q12009 (2005).

    Article  Google Scholar 

  33. Maclennan, J., McKenzie, D., Hilton, F., Grönvold, K. & Shimizu, N. Geochemical variability in a single flow from northern Iceland. J. Geophys. Res. 108, 2007 (2003).

    Article  Google Scholar 

  34. Sobolev, A. V. Melt inclusions in minerals as a source of principle petrological information. Petrology 4, 209–220 (1996).

    Google Scholar 

  35. Spiegelman, M. & Kelemen P. B. Extreme chemical variability as a consequence of channelized melt transport. Geochem. Geophys. Geosyst. 4, 1055 (2003).

    Article  Google Scholar 

  36. Danyushevsky, L. V., Leslie, R. A. J., Crawford, A. J. & Durance, P. Melt inclusions in primitive olivine phenocrysts: The role of localized reaction processes in the origin of anomalous compositions. J. Petrol. 45, 2531–2553 (2004).

    Article  Google Scholar 

  37. Spandler, C., O'Neill, H. S. & Kamenetsky, V. S. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447, 303–306 (2007).

    Article  Google Scholar 

  38. Laubier, M., Schiano, P., Doucelance, R., Ottolini, L. & Laporte, D. Olivine-hosted melt inclusions and melting processes beneath the FAMOUS zone (Mid-Atlantic Ridge). Chem. Geol. 240, 129–150 (2007).

    Article  Google Scholar 

  39. Maclennan, J. Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim. Cosmochim. Acta 72, 4159–4176 (2008).

    Article  Google Scholar 

  40. Maclennan, J. Concurrent mixing and cooling of melts under Iceland. J. Petrol. 49, 1931–1953 (2008).

    Article  Google Scholar 

  41. Bindeman, I. N., Sigmarsson, O. & Eiler, J. Time constraints on the origin of large volume basalts derived from O-isotope and trace element zoning and U-series disequilibria in the Laki and Grímsvötn volcanic system. Earth Planet. Sci. Lett. 245, 245–259 (2006).

    Article  Google Scholar 

  42. Zellmer, G. F., Rubin, K. H., Grönvold, K. & Jurado-Chichay, Z. On the recent bimodal magmatic processes and their rates in the Torfajökull-VeiÐivötn area, Iceland. Earth Planet. Sci. Lett. 269, 387–397 (2008).

    Article  Google Scholar 

  43. Van Orman, J. A., Saal, A. E., Bourdon, B. & Hauri, E. H. Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt–cumulate interaction. Geochim. Cosmochim. Acta 70, 4797–4812 (2006).

    Article  Google Scholar 

  44. Coogan, L. A., Jenkin, G. R. T. & Wilson, R. N., Contrasting cooling rates in the lower oceanic crust at fast- and slow-spreading ridges revealed by geospeedometry. J. Petrol. 48, 2211–2231 (2007).

    Article  Google Scholar 

  45. Hellebrand, E., Snow, J. E., Hoppe, P. & Hofmann, A. W. Garnet-field melting and late-stage refertilization in “residual” abyssal peridotites from the Central Indian Ridge. J. Petrol. 43, 2305–2338 (2002).

    Article  Google Scholar 

  46. Lissenberg, C. J. & Dick, H. J. B. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet. Sci. Lett. 271, 311–325 (2008).

    Article  Google Scholar 

  47. Suhr, G., Hellebrand, E., Johnson, K. T. M. & Brunelli, D. Stacked gabbro units and intervening mantle: A detailed look at a section of IODP Leg 305, Hole U1309D. Geochem. Geophys. Geosyst. 9, Q10007 (2008).

    Google Scholar 

  48. Lissenberg, J. C., Rioux, M., Shimizu, N., Bowring, S. A. & Mével, C. Zircon dating of oceanic crustal accretion. Science 323, 1048–1050 (2009).

    Article  Google Scholar 

  49. Herzberg, C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J. Petrol. 45, 2389–2405 (2004).

    Article  Google Scholar 

  50. Eason, D. & Sinton, J. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth Planet. Sci. Lett. 252, 423–436 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is an outgrowth of ideas presented at the 2008 Goldschmidt conference on Ridges and Geochemical Mapping of the Mantle. The authors wish to thank D. Graham and E. Klein for organizing an inspiring session. This work was supported by National Science Foundation grants OCE-9905463 (K.H.R), OCE-0524922 (J.M.S) and EAR-0627991 (E.H.), and Natural Environment Research Council grants NER/I/S/2002/00609/2 and NE/E001254/1 (J.M.). SOEST contribution number 7715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken H. Rubin.

Supplementary information

Supplementary Methods

Supplementary Information (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, K., Sinton, J., Maclennan, J. et al. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nature Geosci 2, 321–328 (2009). https://doi.org/10.1038/ngeo504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing