Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intense localized rock uplift and erosion in the St Elias orogen of Alaska

An Erratum to this article was published on 21 May 2009

Abstract

The timing and role of exhumation in the St Elias orogen, the world’s highest coastal mountain range, has been unclear. Sampling is limited to high mountain ridges that tower over widespread ice fields that sit in deeply eroded parts of the orogen. Existing bedrock studies1,2,3 in the region are therefore prone to bias. Here we analyse detrital material of active sediment systems in the St Elias orogen to obtain age information from the inaccessible ice-covered valley bottoms. We present 1,674 detrital zircon fission-track ages from modern rivers that drain the glaciers. We find a population of very young ages of less than 3 Myr from the Seward–Malaspina glacier systems that is sharply localized in the area of the orogen’s highest relief, highest seismicity and at the transition from transform to subduction tectonics. Our data provide evidence for intense localized exhumation that is driven by coupling between erosion and active tectonic rock uplift.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic map of southern Alaska.
Figure 2: Sample locations and main tectonic structures.
Figure 3: Comparison of U/Pb zircon ages.

Similar content being viewed by others

References

  1. Berger, A. L. et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge; a thermochronological investigation of tectonic–climatic interactions within the central St. Elias Orogen, Alaska. Earth Planet. Sci. Lett. 270, 13–24 (2008).

    Article  Google Scholar 

  2. Berger, A. L. & Spotila, J. A. Denudation and deformation in a glaciated orogenic wedge: The St. Elias orogen, Alaska. Geology 36, 523–526 (2008).

    Article  Google Scholar 

  3. O’Sullivan, P. B. & Currie, L. D. Thermotectonic history of Mt Logan, Yukon Territory, Canada: Implications of multiple episodes of middle to late Cenozoic denudation. Earth Planet. Sci. Lett. 144, 251–261 (1996).

    Article  Google Scholar 

  4. Plafker, G. in Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins Vol. 6 (ed. Scholl, D. W.) 229–268 (Circum-Pacific Council for Energy and Mineral Resources, 1987).

    Google Scholar 

  5. Ferris, A., Abers, G. A., Christensen, D. H. & Veenstra, E. High resolution image of the subducted Pacific plate beneath central Alaska, 50–150 km depth. Earth Planet. Sci. Lett. 214, 575–588 (2003).

    Article  Google Scholar 

  6. Bruhn, R. L., Pavlis, T. L., Plafker, G. & Serpa, L. Deformation during terrane accretion in the Saint Elias orogen, Alaska. Geol. Soc. Am. Bull. 116, 771–787 (2004).

    Article  Google Scholar 

  7. Farley, K. A. Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite. J. Geophys. Res. 105, 2903–2914 (2000).

    Article  Google Scholar 

  8. Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. T. & Laslett, G. M. Thermal annealing of fission tracks in apatite: 1—a qualitative description. Isot. Geosci. 59, 237–253 (1986).

    Article  Google Scholar 

  9. Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull. 110, 985–1009 (1998).

    Article  Google Scholar 

  10. Meigs, A., Johnston, S., Garver, J. I. & Spotila, J. A. Crustal-scale structural architecture, shortening, and exhumation of an active, eroding orogenic wedge (Chugach/St Elias Range, southern Alaska). Tectonics 27, TC4003 (2008).

    Article  Google Scholar 

  11. Koons, P. O., Zeitler, P. K., Chamberlain, C. P., Craw, D. & Meltzer, A. S. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. Am. J. Sci. 302, 749–773 (2002).

    Article  Google Scholar 

  12. Zeitler, P. K. et al. Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal–mechanical coupling facilitated by erosion. Tectonics 20, 712–728 (2001).

    Article  Google Scholar 

  13. Montgomery, D. R. & Stolar, D. B. Reconsidering Himalayan river anticlines. Geomorphology 82, 4–15 (2006).

    Article  Google Scholar 

  14. Enkelmann, E., Garver, J. I. & Pavlis, T. L. Rapid exhumation of ice-covered rocks of the Chugach–St. Elias orogen, SE-Alaska. Geology 36, 915–918 (2008).

    Article  Google Scholar 

  15. Bernet, M. & Garver, J. I. Fission-track analysis of detrital zircon. Rev. Mineral. Geochem. 58, 205–237 (2005).

    Article  Google Scholar 

  16. Headley, R., Hallet, B. & Rignot, E. Measurements of fast ice flow of the Malaspina Glacier to explore connections between glacial erosion and crustal deformation in the St. Elias Mountains, Alaska. Eos Trans. AGU 88, C41A-0050 (2007).

    Google Scholar 

  17. Plafker, G., Moore, J. C. & Winkler, G. R. in The Geology of Alaska. Geol. N. America Vol. G-1 (eds Plafker, G. & Berg, H. C.) 389–449 (GSA, 1994).

    Google Scholar 

  18. Sisson, V. B. et al. in Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction Along the North Pacific Margin (eds Sisson, V. B.et al.) 293–326 (Geological Society of America, 2003).

    Book  Google Scholar 

  19. Elliott, J., Freymueller, J. T. & Larsen, C. F. Collisional Tectonics in the St. Elias orogen, Alaska, observed by GPS. Eos Trans. AGU 89 Fall Meet. Suppl., Abstract T44A-04. (2008).

  20. Ruppert, N. A., Ridgway, K. D., Freymueller, J. T., Cross, R. S. & Hansen, R. A. in Active Tectonics and Seismic Potential of Alaska (ed. Freymueller, J. T.) 109–133 (Geophysical Monograph Series, Vol. 179, American Geophysical Union, 2008).

    Google Scholar 

  21. Tagami, T., Galbraith, R. F., Yamada, R. & Laslett, G. M. in Advances in Fission-Track Geochronolgy (eds Van den haute, P. & De Corte, F.) 99–112 (Kluwer–Academic, 1998).

    Book  Google Scholar 

  22. Rahn, M. K., Brandon, M. T., Batt, G. E. & Garver, J. I. A zero-damage model for fission-track annealing in zircon. Am. Mineral. 89, 473–484 (2004).

    Article  Google Scholar 

  23. Magoon, L. B. Present-day geothermal gradient, geologic studies of the lower Cook Inlet Cost No. 1 Well, Alaska outer continental shelf. US Geol. Surv. Bull. 1596, 41–46 (1986).

    Google Scholar 

  24. Johnsson, M. J., Pawlewicz, M. J., Harris, A. G. & Valin, Z. C. Vitrinite reflectance and conodont color alteration index data from Alaska: Data to accompany the thermal maturity map of Alaska. USGS Open-File Report 92-409 (1992).

  25. Kamp, P. J. J., Green, P. F. & White, S. H. Fission track analysis reveals character of collisonal tectonics in New Zealand. Tectonics 8, 169–195 (1989).

    Article  Google Scholar 

  26. Garver, J. I. & Kamp, P. J. J. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: Application to the Southern Alps, New Zealand. Tectonophysics 349, 203–219 (2002).

    Article  Google Scholar 

  27. Garver, J. I. Etching zircon age standards for fission-track analysis. Radiat. Meas. 37, 47–53 (2003).

    Article  Google Scholar 

  28. Brandon, M. T. Decomposition of fission-track grain-age distributions. Am. J. Sci. 292, 535–564 (1992).

    Article  Google Scholar 

  29. Fletcher, H. J. & Freymueller, J. T. New GPS constraints on the motion of the Yakutat block. Geophys. Res. Lett. 26, 3029–3032 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank collaborators of the STEEP project for their help during field work and fruitful discussions. We also thank G. Gehrels and V. Valencia for their guidance on U/Pb dating. Sample irradiation was facilitated by the Reactor Use Sharing Program (US DOE) to the Oregon State Nuclear Reactor. A review by P. Reiners improved the manuscript significantly. This study was supported by the NSF grants, EAR-0409132 and 0735402.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and interpretation. Data analysis was carried out by E.E., P.K.Z., J.I.G. and K.D.R., field work by E.E., T.L.P. and K.D.R. and project planning was done by T.L.P., P.K.Z. and K.D.R.

Corresponding author

Correspondence to E. Enkelmann.

Supplementary information

Supplementary Table S1

Supplementary Information (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enkelmann, E., Zeitler, P., Pavlis, T. et al. Intense localized rock uplift and erosion in the St Elias orogen of Alaska. Nature Geosci 2, 360–363 (2009). https://doi.org/10.1038/ngeo502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing