Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of thermal refraction in localizing intraplate deformation in southeastern Ukraine

Abstract

Although tectonic plates are deformed mostly at their boundaries, plate interiors can also show considerable non-rigid behaviour1,2,3. The deformational response of plate interiors to tectonic forces depends on composition and texture, temperature and confining pressure, strain rate, presence of fluids and pre-existing structure. However, the relative importance of these factors has been difficult to establish4. Here we use numerical modelling constrained by geological and geophysical data to assess the factors controlling intraplate deformation in southeastern Ukraine. The model’s starting point was the steady-state thermal structure in an otherwise tectonically stable but heterogeneous lithosphere. Our results show that compressional deformation and uplift of the thick Dniepr–Donets sedimentary basin was facilitated by strain localization resulting from temperature effects (thermal refraction) produced by the contrast in thermal conductivity between the sedimentary fill of the basin and the surrounding crystalline crust. We suggest that in settings where thick sedimentary basins occur in cold lithosphere, intraplate deformation can occur simply because of thermal conductivity contrasts, and the reactivation of inherited mechanical weaknesses may not be necessary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heat flow (mW m−2) in the southern Ukraine21.
Figure 2: Interpretation of the DOBREflection profile18, simplified and depth converted.
Figure 3: Model results.

Similar content being viewed by others

References

  1. Nielsen, S. B., Stephenson, R. A. & Thomsen, E. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations. Nature 450, 1071–1074 (2007).

    Article  Google Scholar 

  2. Banerjee, P., Bürgmann, R., Nagarajan, B. & Apel, E. Intraplate deformation of the Indian subcontinent. Geophys. Res. Lett. 35, L18301 (2008).

    Article  Google Scholar 

  3. Dyksterhuis, S. & Müller, R. D. Cause and evolution of intraplate orogeny in Australia. Geology 36, 495–498 (2008).

    Article  Google Scholar 

  4. Ranalli, G. Rheology of the Earth 2nd edn (Kluwer–Academic, 1995).

    Google Scholar 

  5. Ziegler, P. A. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics 137, 389–420 (1987).

    Article  Google Scholar 

  6. Ziegler, P. A., Cloetingh, S. & van Wees, J. D. Dynamics of intra-plate compressional deformation: The Alpine foreland and other examples. Tectonophysics 252, 7–59 (1995).

    Article  Google Scholar 

  7. Ziegler, P. A., van Wees, J. D. & Cloetingh, S. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300, 103–129 (1998).

    Article  Google Scholar 

  8. Sandiford, M. Mechanics of basin inversion. Tectonophysics 305, 109–120 (1999).

    Article  Google Scholar 

  9. Nielsen, S. B. & Hansen, D. L. Physical explanation of the formation and evolution of inversion zones and marginal troughs. Geology 28, 875–878 (2000).

    Article  Google Scholar 

  10. Hansen, D. L. & Nielsen, S. B. Does thermal weakening explain basin inversion? Earth Planet. Sci. Lett. 198, 113–127 (2002).

    Article  Google Scholar 

  11. Sandiford, M., Hansen, D. L. & McLaren, S. in Analogue and Numerical Modelling of Crustal Scale Processes 253 (eds Buiter, S. & Schreurs, G.) 271–283 (Geological Society Special Publication, 2006).

    Google Scholar 

  12. Stovba, S. M. & Stephenson, R. A. The Donbas Foldbelt: Its relationships with the uninverted Donets segment of the Dniepr–Donets Basin, Ukraine. Tectonophysics 313, 59–83 (1999).

    Article  Google Scholar 

  13. Stephenson, R. A. et al. in European Lithosphere Dynamics 32 (eds Gee, D. G. & Stephenson, R. A.) 463–479 (Geological Society of London Memoir, 2006).

    Google Scholar 

  14. Saintot, A. et al. in European Lithosphere Dynamics 32 (eds Gee, D. G. & Stephenson, R. A.) 277–289 (Geological Society of London Memoir, 2006).

    Google Scholar 

  15. van Wees, J.-D., Stephenson, R. A., Stovba, S. M. & Shymanovskyi, V. A. Tectonic variation in the Dniepr–Donets Basin from automated modelling of backstripped subsidence curves. Tectonophysics 268, 257–280 (1996).

    Article  Google Scholar 

  16. Spiegel, C., Sachsenhofer, R. F., Privalov, V. A., Zhykalyak, M. V. & Panova, E. A. Thermo-tectonic evolution of the Ukrainian Donbas Foldbelt: Evidence from zircon and apatite fission track data. Tectonophysics 383, 193–215 (2004).

    Article  Google Scholar 

  17. Saintot, A., Stephenson, R., Brem, A., Stovba, S. & Privalov, V. Palaeostress field reconstruction and revised tectonic history of the Donbas fold-and-thrust belt (Ukraine and Russia). Tectonics 22, 1059 (2003).

    Article  Google Scholar 

  18. Maystrenko, Yu. et al. Crustal-scale pop-up structure in cratonic lithosphere: DOBRE deep seismic reflection study of the Donbas Foldbelt, Ukraine. Geology 31, 733–736 (2003).

    Article  Google Scholar 

  19. Grad, M. et al. DOBREfraction ’99—velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics 371, 81–110 (2003).

    Article  Google Scholar 

  20. Gordienko, V. V. et al. Geothermal Atlas of Ukraine (Naukova Dumka, 2004) (in Russian and English).

    Google Scholar 

  21. Hurtig, E., Ćermák, V., Haenel, R. & Zui, Z. (eds) Geothermal Atlas of Europe—Maps (International Heat Flow Commission, 1991/2).

  22. Braun, J. & Beaumont, C. in Sedimentary Basins and Basin Forming Mechanisms 12 (eds Beaumont, C. & Tankard, A. J.) 241–258 (Canadian Society of Petroleum Geologists Memoir, 1987).

    Google Scholar 

  23. Paterson, M. S. & Luan, F. C. in Deformation Mechanisms, Rheology and Tectonics 54 (eds Knipe, R. J. & Rutter, E. H.) 299–307 (Geological Society of London Special Publication, 1990).

    Google Scholar 

  24. Shelton, G. & Tullis, J. Experimental flow laws for crustal rocks. Eos 62, 396 (1981).

    Google Scholar 

  25. Chopra, P. N. & Paterson, M. S. The experimental deformation of dunite. Tectonophysics 78, 453–473 (1981).

    Article  Google Scholar 

  26. Zaritskii, A. L. Geology and Metallogeny of the South-Western Part of the East-European Platform: Ukrainian Shield, Voronezh and Belarussian Massifs Scale 1:1.000.000. (Geological Committee of Ukraine, 1992).

  27. Clauser, C. & Huenges, E. in Rock Physics & Phase Relations: A Handbook of Physical Contents 3 (ed. Ahrens, T. J.) 105–126 (AGU Reference Shelf, 1995).

    Google Scholar 

  28. Grad, M. et al. Crustal structure of the Trans-European Suture Zone region along POLONAISE’ 97 seismic profile P4. J. Geophys. Res. 108, 2541 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was initiated and completed during successive visiting fellowships for R.S. at the Department of Earth Science of the University of Aarhus.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and approve the version being submitted.

Corresponding author

Correspondence to Randell Stephenson.

Supplementary information

Supplementary Information

Supplementary Information (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, R., Egholm, D., Nielsen, S. et al. Role of thermal refraction in localizing intraplate deformation in southeastern Ukraine. Nature Geosci 2, 290–293 (2009). https://doi.org/10.1038/ngeo479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing